Analysis of Photonic Crystal Filters by the Finite-Difference Time-Domain Technique

A special finite-difference time-domain (FDTD) formulation which allows electromagnetic (EM) wave wideband simulations of oblique incidence for periodic media is used for the design and analysis of an infrared photonic crystal filter with dual stopbands at 3–5 and 8–12 μm. The transmission coefficient in the main stopband (8–12 μm) is below −10 dB. Scattering coefficients are calculated for different incidence angles, and the stopbands are shown to exist for different angles of incidence. © 2000 John Wiley & Sons, Inc. Microwave Opt Technol Lett 27: 81–87, 2000.

[1]  Simon Verghese,et al.  Calculated and measured transmittance of metallodielectric photonic crystals incorporating flat metal elements , 1998 .

[2]  J L Hesler,et al.  Resonant metal-mesh bandpass filters for the far infrared. , 1994, Applied optics.

[3]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[4]  Eli Yablonovitch,et al.  Nanofabricated Three Dimensional Photonic Crystals Operating at Optical Wavelengths , 1996 .

[5]  Simon Verghese,et al.  Three-dimensional metallodielectric photonic crystals exhibiting resonant infrared stop bands , 1997 .

[6]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[7]  Raj Mittra,et al.  Design of a dichroic surface for dual-frequency radioastronomical observations , 1999 .

[8]  J. Joannopoulos,et al.  Large omnidirectional band gaps in metallodielectric photonic crystals. , 1996, Physical review. B, Condensed matter.

[9]  K.A. Michalski,et al.  Electromagnetic wave theory , 1987, Proceedings of the IEEE.

[10]  Chi Hou Chan,et al.  Analysis of scattering from frequency-selective surfaces in the infrared , 1990 .

[11]  Shanhui Fan,et al.  Photonic crystals: Theory and device applications , 1997 .

[12]  J. Montgomery,et al.  Scattering by an infinite array of multiple parallel strips , 1979 .

[13]  Changhua Wan,et al.  Exploitation of symmetries in the impedance matrix for moment-method analysis of arbitrary frequency-selective surfaces , 1995, IEEE Antennas and Propagation Society International Symposium. 1995 Digest.

[14]  Raj Mittra,et al.  The cascade connection of planar periodic surfaces and lossy dielectric layers to form an arbitrary periodic screen , 1987 .

[15]  T. Leonard,et al.  Frequency selective surfaces , 1977 .

[16]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[17]  J.C. Chen,et al.  THz dichroic plates for use at high angles of incidence , 1991, IEEE Microwave and Guided Wave Letters.

[18]  Shanhui Fan,et al.  3D Metallo-Dielectric Photonic Crystals with Strong Capacitive Coupling between Metallic Islands , 1998 .

[19]  M. Sickmiller,et al.  3D Wire mesh photonic crystals. , 1996, Physical review letters.

[20]  Simon Verghese,et al.  THREE-DIMENSIONAL METALLODIELECTRIC PHOTONIC CRYSTALS INCORPORATING FLAT METAL ELEMENTS , 1998 .

[21]  R. Ulrich Far-infrared properties of metallic mesh and its complementary structure , 1967 .

[22]  H. Bertoni,et al.  Reflection from a periodically perforated plane using a subsectional current approximation , 1983 .

[23]  Y. Rahmat Samii,et al.  Analysis of arbitrary frequency selective surfaces: analytic constraints , 1996, IEEE Antennas and Propagation Society International Symposium. 1996 Digest.

[24]  S.,et al.  Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media , 1966 .

[25]  Jin Au Kong,et al.  A Finite-Difference Time-Domain Analysis of Wave Scattering from Periodic Surfaces: Oblique Incidence Case , 1993 .

[26]  Eli Yablonovitch,et al.  Photonic band-gap crystals , 1993 .

[27]  Shung-wu Lee,et al.  Simple formulas for transmission through periodic metal grids or plates , 1982 .

[28]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[29]  Raj Mittra,et al.  Analysis of multilayered periodic structures using generalized scattering matrix theory , 1988 .

[30]  J. A. Kong,et al.  Second-order coupled-mode equations for spatially periodic media* , 1977 .

[31]  Changhua Wan,et al.  Efficient computation of generalized scattering matrix for analyzing multilayered periodic structures , 1995 .

[32]  Eli Yablonovitch,et al.  Microfabrication of Photonic Bandgap Crystals , 1996 .

[33]  J. Joannopoulos,et al.  Omnidirectional reflection from a one-dimensional photonic crystal. , 1998, Optics letters.

[34]  J. A. Arnaud,et al.  Resonant-grid quasi-optical diplexers , 1975, The Bell System Technical Journal.

[35]  Chao-Chun Chen,et al.  Transmission of Microwave Through Perforated Flat Plates of Finite Thickness , 1973 .

[36]  Yin-Chun Andrew Kao Finite-difference time-domain modeling of oblique indidence scattering from periodic surfaces , 1997 .

[37]  Edward A. Parker,et al.  Rings as elements for frequency selective surfaces , 1981 .

[38]  P. Yeh,et al.  Electromagnetic propagation in periodic stratified media. I. General theory , 1977 .

[39]  R. Mittra,et al.  Scattering from a periodic array of free-standing arbitrarily shaped perfectly conducting or resistive patches , 1987 .