Cores and cusps in warm dark matter halos

The apparent presence of large core radii in Low Surface Brightness galaxies has been claimed as evidence in favor of warm dark matter. Here we show that WDM halos do not have cores that are large fractions of the halo size: typically, rcore/r20010−3. This suggests an astrophysical origin for the large cores observed in these galaxies, as has been argued by other authors.

[1]  A. Cimatti,et al.  Effects of massive neutrinos on the large-scale structure of the Universe , 2011, 1103.0278.

[2]  N. Dalal,et al.  SELF-SIMILAR SOLUTIONS OF TRIAXIAL DARK MATTER HALOS , 2010, 1010.3723.

[3]  S. Hannestad,et al.  Neutrinos in non-linear structure formation — the effect on halo properties , 2010, 1004.4105.

[4]  Thomas Kitching,et al.  Can we measure the neutrino mass hierarchy in the sky , 2010, 1003.5918.

[5]  Durham,et al.  Secondary infall and the pseudo-phase-space density profiles of cold dark matter haloes , 2010, 1001.2310.

[6]  J. Bullock,et al.  THE CASE AGAINST WARM OR SELF-INTERACTING DARK MATTER AS EXPLANATIONS FOR CORES IN LOW SURFACE BRIGHTNESS GALAXIES , 2009, 0912.3518.

[7]  B. Willman,et al.  Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows , 2009, Nature.

[8]  R. Mohayaee,et al.  Caustics in growing cold dark matter haloes , 2009, 0906.4341.

[9]  A. Kravtsov,et al.  Dark matter substructure and dwarf galactic satellites , 2009, 0906.3295.

[10]  S. Hannestad,et al.  Grid based linear neutrino perturbations in cosmological N-body simulations , 2008, 0812.3149.

[11]  Y. Jing,et al.  ACCURATE UNIVERSAL MODELS FOR THE MASS ACCRETION HISTORIES AND CONCENTRATIONS OF DARK MATTER HALOS , 2008, 0811.0828.

[12]  Carlos S. Frenk,et al.  The diversity and similarity of simulated cold dark matter haloes , 2008, 0810.1522.

[13]  S. White,et al.  Are mergers responsible for universal halo properties , 2008, 0809.1322.

[14]  B. Willman,et al.  Hundreds of Milky Way Satellites? Luminosity Bias in the Satellite Luminosity Function , 2008, 0806.4381.

[15]  O. Valenzuela,et al.  On the Structure of Dark Matter Halos at the Damping Scale of the Power Spectrum with and without Relict Velocities , 2007, 0709.4027.

[16]  P. Salucci,et al.  The universal rotation curve of spiral galaxies II: the dark matter distribution out to the virial radius , 2007, astro-ph/0703115.

[17]  S. White,et al.  Discreteness effects in simulations of hot/warm dark matter , 2007, astro-ph/0702575.

[18]  Carlos S. Frenk,et al.  The large-scale structure of the Universe , 2006, Nature.

[19]  H. Trac,et al.  Can sterile neutrinos be the dark matter? , 2006, Physical review letters.

[20]  P. Salucci,et al.  The Dwarf Galaxy DDO 47 as a Dark Matter Laboratory: Testing Cusps Hiding in Triaxial Halos , 2005, astro-ph/0506538.

[21]  J. Lesgourgues,et al.  Massive neutrinos and cosmology , 2005, astro-ph/0603494.

[22]  A. Ringwald,et al.  Gravitational clustering of relic neutrinos and implications for their detection , 2004, hep-ph/0408241.

[23]  Y. Jing,et al.  Mass and Redshift Dependence of Dark Halo Structure , 2003, astro-ph/0309375.

[24]  R. Henriksen,et al.  Non-radial motion and the nfw profile , 2003, astro-ph/0307046.

[25]  Chung-Pei Ma,et al.  Neutrino clustering in cold dark matter halos: Implications for ultrahigh energy cosmic rays , 2002, astro-ph/0208419.

[26]  Y. Jing,et al.  The growth and structure of dark matter haloes , 2002, astro-ph/0204108.

[27]  J. Ostriker,et al.  Halo Formation in Warm Dark Matter Models , 2000, astro-ph/0010389.

[28]  Wayne Hu,et al.  Power Spectra for Cold Dark Matter and Its Variants , 1997, astro-ph/9710252.

[29]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[30]  L. Widrow,et al.  Self-Similar Relaxation of Self-Gravitating Collisionless Particles , 1997 .

[31]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[32]  D. Eisenstein,et al.  Probing Early Clustering with LY alpha Absorption Lines beyond the Quasar Redshift , 1994, astro-ph/9411054.

[33]  S. Tremaine,et al.  A family of models for spherical stellar systems , 1993, astro-ph/9309044.

[34]  N. Kaiser,et al.  Mapping the dark matter with weak gravitational lensing , 1993 .

[35]  R. Blandford,et al.  Fermat's principle, caustics, and the classification of gravitational lens images , 1986 .

[36]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[37]  E. Bertschinger Self-similar secondary infall and accretion in an Einstein-de Sitter universe , 1985 .

[38]  P. Goldreich,et al.  Self-similar gravitational collapse in an expanding universe , 1984 .

[39]  S. Tremaine,et al.  Dynamical Role of Light Neutral Leptons in Cosmology , 1979 .

[40]  M. Hénon Numerical Experiments on the Stability of Spherical Stellar Systems , 1973 .

[41]  R. Wechsler,et al.  The Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 14/09/00 CONCENTRATIONS OF DARK HALOS FROM THEIR ASSEMBLY HISTORIES , 2001 .

[42]  spectrum of cold dark matter particles on , 1996 .

[43]  P. Hut,et al.  Dynamical Instabilities in Spherical Stellar Systems , 1985 .

[44]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .

[45]  submitted to The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 CATS AND DOGS, HAIR AND A HERO: A QUINTET OF NEW MILKY WAY COMPANIONS † , 2022 .