Intercellular signaling and signal transduction in C. elegans.

Intercellular signaling and signal transduction underlie most aspects of development and behavior. To understand any specific case we must identify the ligands, receptors and transducers, as well as regulators that modulate the activity of the signaling pathway. To understand more general aspects of signaling, we have to address the questions: To what extent are there modular signaling pathways, i.e. pathways that act as coherent units? How many such pathways are there? What factors affect the action of a universal pathway in particular cases? How widely is a given component or pathway used? How are the effects of multiple signaling pathways integrated? Here I discuss the use of Caenorhabditis elegans molecular genetics to study problems of intercellular signaling and signal transduction.

[1]  E. Hafen,et al.  A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos , 1993, Cell.

[2]  G. Rubin,et al.  An SH3-SH2-SH3 protein is required for p21 Ras1 activation and binds to sevenless and Sos proteins in vitro , 1993, Cell.

[3]  L. Avery,et al.  The genetics of feeding in Caenorhabditis elegans. , 1993, Genetics.

[4]  P. Sternberg,et al.  Splicing in Caenorhabditis elegans does not require an AG at the 3' splice acceptor site , 1993, Molecular and cellular biology.

[5]  V. Kodoyianni,et al.  Molecular basis of loss-of-function mutations in the glp-1 gene of Caenorhabditis elegans. , 1992, Molecular biology of the cell.

[6]  J. Brookfield Can genes be truly redundant? , 1992, Current Biology.

[7]  C. Kenyon,et al.  Cell signals allow the expression of a pre-existent neural pattern in C. elegans. , 1992, Development.

[8]  Paul W. Sternberg,et al.  The gene lin-3 encodes an inductive signal for vulval development in C. elegans , 1992, Nature.

[9]  B. Goldstein Induction of gut in Caenorhabditis elegans embryos , 1992, Nature.

[10]  N. Halloran,et al.  A survey of expressed genes in Caenorhabditis elegans , 1992, Nature Genetics.

[11]  P. Kuwabara,et al.  tra-2 encodes a membrane protein and may mediate cell communication in the Caenorhabditis elegans sex determination pathway. , 1992, Molecular biology of the cell.

[12]  H. Horvitz,et al.  C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains , 1992, Nature.

[13]  R. Staden,et al.  The C. elegans genome sequencing project: a beginning , 1992, Nature.

[14]  A. Nairn,et al.  Mechanism of desensitization of the epidermal growth factor receptor protein-tyrosine kinase. , 1992, The Journal of biological chemistry.

[15]  P. Sternberg,et al.  Analysis of dominant-negative mutations of the Caenorhabditis elegans let-60 ras gene. , 1991, Genes & development.

[16]  C. Kenyon,et al.  A cluster of Antennapedia-class homeobox genes in a nonsegmented animal. , 1991, Science.

[17]  A. Coulson,et al.  YACs and the C. elegans genome. , 1991, BioEssays : news and reviews in molecular, cellular and developmental biology.

[18]  G. Ruvkun,et al.  Nematode homeobox cluster , 1991, Nature.

[19]  Paul W. Sternberg,et al.  Multiple intercellular signalling systems control the development of the Caenorhabditis elegans vulva , 1991, Nature.

[20]  T Pawson,et al.  SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. , 1991, Science.

[21]  J Kimble,et al.  Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. , 1991, Development.

[22]  W. Kolch,et al.  Raf-1 protein kinase is required for growth of induced NIH/3T3 cells , 1991, Nature.

[23]  H. Horvitz,et al.  Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction , 1990, Nature.

[24]  P. Sternberg,et al.  The let-60 locus controls the switch between vulval and nonvulval cell fates in Caenorhabditis elegans. , 1990, Genetics.

[25]  H. Horvitz,et al.  Cell interactions coordinate the development of the C. elegans egg-laying system , 1990, Cell.

[26]  D. Riddle,et al.  daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase , 1990, Cell.

[27]  H. Horvitz,et al.  The Caenorhabditis elegans gene lin-10 is broadly expressed while required specifically for the determination of vulval cell fates. , 1990, Genes & development.

[28]  E. Wolinsky,et al.  The behavioral genetics ofCaenorhabditis elegans , 1990, Behavior genetics.

[29]  D. Hall,et al.  The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans , 1990, Neuron.

[30]  Ira Herskowitz,et al.  A regulatory hierarchy for cell specialization in yeast , 1989, Nature.

[31]  H. Horvitz,et al.  The multivulva phenotype of certain Caenorhabditis elegans mutants results from defects in two functionally redundant pathways. , 1989, Genetics.

[32]  Paul W. Sternberg,et al.  The combined action of two intercellular signaling pathways specifies three cell fates during vulval induction in C. elegans , 1989, Cell.

[33]  H. Horvitz,et al.  A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons , 1988, Nature.

[34]  A. Coulson,et al.  Genome linking with yeast artificial chromosomes , 1988, Nature.

[35]  Carl D. Johnson,et al.  The acetylcholinesterase genes of C. elegans: Identification of a third gene (ace-3) and mosaic mapping of a synthetic lethal phenotype , 1988, Neuron.

[36]  A. Coulson,et al.  Toward a physical map of the genome of the nematode Caenorhabditis elegans. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Culotti,et al.  Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. , 1985, Developmental biology.

[38]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[40]  H. Horvitz,et al.  The lin-12 locus specifies cell fates in caenorhabditis elegans , 1983, Cell.

[41]  D. Riddle,et al.  Interacting genes in nematode dauer larva formation , 1981, Nature.

[42]  J E Sulston,et al.  Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans. , 1981, Developmental biology.

[43]  J. White,et al.  On the control of germ cell development in Caenorhabditis elegans. , 1981, Developmental biology.

[44]  J. Sulston,et al.  Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. , 1980, Genetics.

[45]  J. Sulston,et al.  The Caenorhabditis elegans male: postembryonic development of nongonadal structures. , 1980, Developmental biology.

[46]  D. Sattelle,et al.  Acetylcholine receptor molecules of the nematode Caenorhabditis elegans. , 1993, EXS.

[47]  J. Thomas,et al.  Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. , 1992, Genetics.

[48]  G. Carpenter,et al.  The Epidermal Growth Factor Family , 1991 .

[49]  E. Lambie,et al.  Genetic control of cell interactions in nematode development. , 1991, Annual review of genetics.

[50]  H. Horvitz,et al.  The multivulva phenotype of certain C. elegans mutants results from defects in two functionally redundant pathways , 1989 .

[51]  W. Wood The Nematode Caenorhabditis elegans , 1988 .