Incremental Elicitation of Choquet Capacities for Multicriteria Decision Making

The Choquet integral is one of the most sophisticated and expressive preference models used in decision theory for multicriteria decision making. It performs a weighted aggregation of criterion values using a capacity function assigning a weight to any coalition of criteria, thus enabling positive and/or negative interactions among criteria and covering an important range of possible decision behaviors. However, the specification of the capacity involves many parameters which raises challenging questions, both in terms of elicitation burden and guarantee on the quality of the final recommendation. In this paper, we investigate the incremental elicitation of the capacity through a sequence of preference queries selected one-by-one using a minimax regret strategy so as to progressively reduce the set of possible capacities until a decision can be made. We propose a new approach designed to efficiently compute minimax regret for the Choquet model. Numerical experiments are provided to demonstrate the practical efficiency of our approach.

[1]  Hung T. Nguyen,et al.  Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference , 1994 .

[2]  M. Yaari The Dual Theory of Choice under Risk , 1987 .

[3]  Craig Boutilier,et al.  Assessing regret-based preference elicitation with the UTPREF recommendation system , 2010, EC '10.

[4]  Patrick Meyer,et al.  Sorting multi-attribute alternatives: The TOMASO method , 2005, Comput. Oper. Res..

[5]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[6]  R. Mesiar,et al.  Aggregation Functions: Aggregation on ordinal scales , 2009 .

[7]  Brice Mayag,et al.  Identification of a 2-Additive Bi-Capacity by Using Mathematical Programming , 2013, ADT.

[8]  Patrice Perny,et al.  Compact versus noncompact LP formulations for minimizing convex Choquet integrals , 2013, Discret. Appl. Math..

[9]  Christophe Labreuche,et al.  Integration and propagation of a multi-criteria decision making model in constraint programming , 2006, J. Heuristics.

[10]  Craig Boutilier,et al.  A POMDP formulation of preference elicitation problems , 2002, AAAI/IAAI.

[11]  V. Torra The weighted OWA operator , 1997, International Journal of Intelligent Systems.

[12]  Craig Boutilier,et al.  Constraint-based optimization and utility elicitation using the minimax decision criterion , 2006, Artif. Intell..

[13]  J. Schreiber Foundations Of Statistics , 2016 .

[14]  R. Mesiar,et al.  Aggregation Functions (Encyclopedia of Mathematics and its Applications) , 2009 .

[15]  Craig Boutilier,et al.  Regret-based optimal recommendation sets in conversational recommender systems , 2009, RecSys '09.

[16]  Craig Boutilier,et al.  Decision-theoretic elicitation of generalized additive utilities , 2012 .

[17]  Ariel D. Procaccia,et al.  Strategyproof Classification with Shared Inputs , 2009, IJCAI.

[18]  Eyke Hüllermeier,et al.  Efficient Learning of Classifiers Based on the 2-Additive Choquet Integral , 2013 .

[19]  Daphne Koller,et al.  Making Rational Decisions Using Adaptive Utility Elicitation , 2000, AAAI/IAAI.

[20]  Eyke Hüllermeier,et al.  Learning Monotone Nonlinear Models Using the Choquet Integral , 2011, ECML/PKDD.

[21]  Jean-Luc Marichal,et al.  Determination of weights of interacting criteria from a reference set , 2000, Eur. J. Oper. Res..

[22]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[23]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[24]  Andrew P. Sage,et al.  A model of multiattribute decisionmaking and trade-off weight determination under uncertainty , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  Michel Grabisch,et al.  A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid , 2010, Ann. Oper. Res..

[26]  Patrick Meyer,et al.  On the use of the Choquet integral with fuzzy numbers in multiple criteria decision support , 2006, Fuzzy Sets Syst..

[27]  Patrice Perny,et al.  Dominance Rules for the Choquet Integral in Multiobjective Dynamic Programming , 2013, IJCAI.

[28]  Mikhail Timonin,et al.  Maximization of the Choquet integral over a convex set and its application to resource allocation problems , 2012, Annals of Operations Research.

[29]  Raimo P. Hämäläinen,et al.  Preference ratios in multiattribute evaluation (PRIME)-elicitation and decision procedures under incomplete information , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[30]  Craig Boutilier,et al.  Optimal Bayesian Recommendation Sets and Myopically Optimal Choice Query Sets , 2010, NIPS.

[31]  Patrice Perny,et al.  Choquet-based optimisation in multiobjective shortest path and spanning tree problems , 2010, Eur. J. Oper. Res..