Gödel's Program Revisited Part I: The Turn to Phenomenology

Convinced that the classically undecidable problems of mathematics possess determinate truth values, Godel issued a programmatic call to search for new axioms for their solution. The platonism underlying his belief in the determinateness of those questions in combination with his conception of intuition as a kind of perception have struck many of his readers as highly problematic. Following Godel's own suggestion, this article explores ideas from phenomenology to specify a meaning for his mathematical realism that allows for a defensible epistemology.

[1]  E. Zermelo Über Grenzzahlen und Mengenbereiche , 1930 .

[2]  Solomon Feferman,et al.  DOES MATHEMATICS NEED NEW AXIOMS , 1999 .

[3]  Horace M. Kallen,et al.  Structure, Method and Meaning , 1952 .

[4]  Hilary Putnam,et al.  Philosophy of mathematics : selected readings , 1984 .

[5]  F. Hausdorff,et al.  Grundzüge einer Theorie der geordneten Mengen , 1908 .

[6]  H. Reiche,et al.  Aristotle: De Anima , 1962 .

[7]  G. Cantor Ueber unendliche, lineare Punktmannichfaltigkeiten , 1883 .

[8]  Karl Stumpf,et al.  Über den psychologischen Ursprung der Raumvorstellung , 1873 .

[9]  W. Hugh Woodin,et al.  The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal , 1999 .

[10]  Kenneth Kunen,et al.  Elementary embeddings and infinitary combinatorics , 1971, Journal of Symbolic Logic.

[11]  Cantor Ueber unendliche, lineare Punktmannichfaltigkeiten. 5. Fortsetzung. , 1883 .

[12]  Alonzo Church,et al.  A Revised Formulation of the Logic of Sense and Denotation. Alternative (1) , 1993 .

[13]  Charles Parsons,et al.  Reason and Intuition* , 2000, Synthese.

[14]  Gottlob Frege,et al.  Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens , 1879 .

[15]  Kai Hauser Indescribable Cardinals and Elementary Embeddings , 1991, J. Symb. Log..

[16]  Ronald B. Jensen,et al.  Inner Models and Large Cardinals , 1995, Bulletin of Symbolic Logic.

[17]  J. Heijenoort From Frege To Gödel , 1967 .

[18]  D. Føllesdal Brentano and Husserl on Intentional Objects and Perception , 1978 .

[19]  Charles D. Parsons,et al.  Platonism and Mathematical Intuition in Kurt Gödel's Thought , 1995, Bulletin of Symbolic Logic.

[20]  M. Merleau-Ponty Phénoménologie de la perception , 1950 .

[21]  Philip W. Goetz The New Encyclopaedia Britannica , 1991 .

[22]  K. Gödel The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Hao Wang,et al.  A Logical Journey: From Gödel to Philosophy , 1996 .

[24]  G. Cantor,et al.  Gesammelte Abhandlungen mathematischen und philosophischen Inhalts , 1934 .

[25]  Martin Davis,et al.  What did Gödel Believe and When did He believe It? , 2005, Bulletin of Symbolic Logic.

[26]  J. Fodor The elm and the expert : mentalese and its semantics , 1995 .

[27]  Harvey M. Friedman,et al.  Finite functions and the necessary use of large cardinals , 1998, math/9811187.

[28]  K. Gödel,et al.  Kurt Gödel : collected works , 1986 .

[29]  Alfred Tarski,et al.  The Theory of Models Proceedings of the 1963 International Symposium at Berkeley , 1965 .

[30]  Dagfinn Føllesdal,et al.  Husserl's Notion of Noema , 1969 .

[31]  Azriel Lévy AXIOM SCHEMATA OF STRONG INFINITY IN AXIOMATIC SET THEORY , 1960 .

[32]  K. Gödel Philosophy of mathematics: What is Cantor's continuum problem? , 1984 .

[33]  Immanuel Kant Kritik Der Reinen Vernunft , 2004 .

[34]  W. Reinhardt Set existence principles of Shoenfield, Ackermann, and Powell , 1974 .

[35]  Kai Hauser,et al.  Objectivity Over Objects: A Case Study In Theory Formation , 2001, Synthese.

[36]  M. Heidegger Kant und das Problem der Metaphysik , 1952 .

[37]  Edmund Husserl,et al.  Logische Untersuchungen. Erster Theil: Prolegomena zur reinen Logik , 2022 .

[38]  Karen Wynn,et al.  Addition and subtraction by human infants , 1992, Nature.

[39]  G. Cantor Beiträge zur Begründung der transfiniten Mengenlehre , 1897 .

[40]  Dorion Cairns,et al.  Guide for Translating Husserl , 1973 .

[41]  Alonzo Church,et al.  Introduction to Mathematical Logic , 1991 .

[42]  Aristotle De anima , 1909 .

[43]  H A SIMON,et al.  INFORMATION PROCESSING IN COMPUTER AND MAN. , 1964, American scientist.

[44]  John R. Steel,et al.  A proof of projective determinacy , 1989 .

[45]  Kai Hauser Is Cantor's Continuum Problem Inherently Vague? , 2002 .

[46]  Virgil C. Aldrich,et al.  The Philosophy of Bertrand Russell , 1945 .

[47]  Alfred Tarski,et al.  Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .

[48]  Gianluigi Oliveri,et al.  Truth in Mathematics , 1998 .

[49]  A. Tarski,et al.  Logic, Methodology and Philosophy of Science Proceedings of the 1960 International Congress , 1962 .

[50]  Kai Hauser Is choice self-evident? , 2005 .

[51]  Hao Wang,et al.  From Mathematics to Philosophy. , 1975 .

[52]  W. Tait Truth and proof: The Platonism of mathematics , 1986, Synthese.

[53]  R. Latta,et al.  Leibniz: The Monadology and other Philosophical Writings. , 1899 .

[54]  Jean Piaget,et al.  Einführung in die genetische Erkenntnistheorie , 1973 .

[55]  Edmund Husserl,et al.  Analysen zur passiven Synthesis : aus Vorlesungs- und Forschungsmanuskripten, 1918-1926 , 1966 .

[56]  A. Kanamori The Higher Infinite , 1994 .

[57]  Edmund Husserl,et al.  Formale und transzendentale Logik : Versuch einer Kritik der logischen Vernunft , 1981 .

[58]  Penelope Maddy,et al.  Realism in mathematics , 1991 .

[59]  Y. Moschovakis Descriptive Set Theory , 1980 .

[60]  John R. Steel,et al.  Does Mathematics Need New Axioms? , 2000, Bulletin of Symbolic Logic.

[61]  A. Levy,et al.  Measurable cardinals and the continuum hypothesis , 1967 .

[62]  Wacław Sierpiński,et al.  Sur une propriété caractéristique des nombres inaccessibles , 1930 .

[63]  Edmund Husserl,et al.  Erfahrung und Urteil : Untersuchungen zur Genealogie der Logik , 1939 .

[64]  E. Husserl,et al.  Die Idee der Phänomenologie : fünf Vorlesungen , 1950 .

[65]  S. Ulam,et al.  Zur Masstheorie in der allgemeinen Mengenlehre , 1930 .