Gödel's Program Revisited Part I: The Turn to Phenomenology
暂无分享,去创建一个
[1] E. Zermelo. Über Grenzzahlen und Mengenbereiche , 1930 .
[2] Solomon Feferman,et al. DOES MATHEMATICS NEED NEW AXIOMS , 1999 .
[3] Horace M. Kallen,et al. Structure, Method and Meaning , 1952 .
[4] Hilary Putnam,et al. Philosophy of mathematics : selected readings , 1984 .
[5] F. Hausdorff,et al. Grundzüge einer Theorie der geordneten Mengen , 1908 .
[6] H. Reiche,et al. Aristotle: De Anima , 1962 .
[7] G. Cantor. Ueber unendliche, lineare Punktmannichfaltigkeiten , 1883 .
[8] Karl Stumpf,et al. Über den psychologischen Ursprung der Raumvorstellung , 1873 .
[9] W. Hugh Woodin,et al. The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal , 1999 .
[10] Kenneth Kunen,et al. Elementary embeddings and infinitary combinatorics , 1971, Journal of Symbolic Logic.
[11] Cantor. Ueber unendliche, lineare Punktmannichfaltigkeiten. 5. Fortsetzung. , 1883 .
[12] Alonzo Church,et al. A Revised Formulation of the Logic of Sense and Denotation. Alternative (1) , 1993 .
[13] Charles Parsons,et al. Reason and Intuition* , 2000, Synthese.
[14] Gottlob Frege,et al. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens , 1879 .
[15] Kai Hauser. Indescribable Cardinals and Elementary Embeddings , 1991, J. Symb. Log..
[16] Ronald B. Jensen,et al. Inner Models and Large Cardinals , 1995, Bulletin of Symbolic Logic.
[17] J. Heijenoort. From Frege To Gödel , 1967 .
[18] D. Føllesdal. Brentano and Husserl on Intentional Objects and Perception , 1978 .
[19] Charles D. Parsons,et al. Platonism and Mathematical Intuition in Kurt Gödel's Thought , 1995, Bulletin of Symbolic Logic.
[20] M. Merleau-Ponty. Phénoménologie de la perception , 1950 .
[21] Philip W. Goetz. The New Encyclopaedia Britannica , 1991 .
[22] K. Gödel. The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis. , 1938, Proceedings of the National Academy of Sciences of the United States of America.
[23] Hao Wang,et al. A Logical Journey: From Gödel to Philosophy , 1996 .
[24] G. Cantor,et al. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts , 1934 .
[25] Martin Davis,et al. What did Gödel Believe and When did He believe It? , 2005, Bulletin of Symbolic Logic.
[26] J. Fodor. The elm and the expert : mentalese and its semantics , 1995 .
[27] Harvey M. Friedman,et al. Finite functions and the necessary use of large cardinals , 1998, math/9811187.
[28] K. Gödel,et al. Kurt Gödel : collected works , 1986 .
[29] Alfred Tarski,et al. The Theory of Models Proceedings of the 1963 International Symposium at Berkeley , 1965 .
[30] Dagfinn Føllesdal,et al. Husserl's Notion of Noema , 1969 .
[31] Azriel Lévy. AXIOM SCHEMATA OF STRONG INFINITY IN AXIOMATIC SET THEORY , 1960 .
[32] K. Gödel. Philosophy of mathematics: What is Cantor's continuum problem? , 1984 .
[33] Immanuel Kant. Kritik Der Reinen Vernunft , 2004 .
[34] W. Reinhardt. Set existence principles of Shoenfield, Ackermann, and Powell , 1974 .
[35] Kai Hauser,et al. Objectivity Over Objects: A Case Study In Theory Formation , 2001, Synthese.
[36] M. Heidegger. Kant und das Problem der Metaphysik , 1952 .
[37] Edmund Husserl,et al. Logische Untersuchungen. Erster Theil: Prolegomena zur reinen Logik , 2022 .
[38] Karen Wynn,et al. Addition and subtraction by human infants , 1992, Nature.
[39] G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre , 1897 .
[40] Dorion Cairns,et al. Guide for Translating Husserl , 1973 .
[41] Alonzo Church,et al. Introduction to Mathematical Logic , 1991 .
[42] Aristotle De anima , 1909 .
[43] H A SIMON,et al. INFORMATION PROCESSING IN COMPUTER AND MAN. , 1964, American scientist.
[44] John R. Steel,et al. A proof of projective determinacy , 1989 .
[45] Kai Hauser. Is Cantor's Continuum Problem Inherently Vague? , 2002 .
[46] Virgil C. Aldrich,et al. The Philosophy of Bertrand Russell , 1945 .
[47] Alfred Tarski,et al. Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .
[48] Gianluigi Oliveri,et al. Truth in Mathematics , 1998 .
[49] A. Tarski,et al. Logic, Methodology and Philosophy of Science Proceedings of the 1960 International Congress , 1962 .
[50] Kai Hauser. Is choice self-evident? , 2005 .
[51] Hao Wang,et al. From Mathematics to Philosophy. , 1975 .
[52] W. Tait. Truth and proof: The Platonism of mathematics , 1986, Synthese.
[53] R. Latta,et al. Leibniz: The Monadology and other Philosophical Writings. , 1899 .
[54] Jean Piaget,et al. Einführung in die genetische Erkenntnistheorie , 1973 .
[55] Edmund Husserl,et al. Analysen zur passiven Synthesis : aus Vorlesungs- und Forschungsmanuskripten, 1918-1926 , 1966 .
[56] A. Kanamori. The Higher Infinite , 1994 .
[57] Edmund Husserl,et al. Formale und transzendentale Logik : Versuch einer Kritik der logischen Vernunft , 1981 .
[58] Penelope Maddy,et al. Realism in mathematics , 1991 .
[59] Y. Moschovakis. Descriptive Set Theory , 1980 .
[60] John R. Steel,et al. Does Mathematics Need New Axioms? , 2000, Bulletin of Symbolic Logic.
[61] A. Levy,et al. Measurable cardinals and the continuum hypothesis , 1967 .
[62] Wacław Sierpiński,et al. Sur une propriété caractéristique des nombres inaccessibles , 1930 .
[63] Edmund Husserl,et al. Erfahrung und Urteil : Untersuchungen zur Genealogie der Logik , 1939 .
[64] E. Husserl,et al. Die Idee der Phänomenologie : fünf Vorlesungen , 1950 .
[65] S. Ulam,et al. Zur Masstheorie in der allgemeinen Mengenlehre , 1930 .