Probabilistic Models and Learning

[1]  R. T. Cox The Algebra of Probable Inference , 1962 .

[2]  Edward A. Bender,et al.  Mathematical methods in artificial intelligence , 1996 .

[3]  D M Boulton,et al.  The information content of a multistate distribution. , 1969, Journal of theoretical biology.

[4]  Andrae I. Khuri,et al.  Advanced Calculus with Applications in Statistics , 2003 .

[5]  Pierre Baldi,et al.  Bioinformatics - the machine learning approach (2. ed.) , 2000 .

[6]  David Lindley,et al.  The Probability Approach to the Treatment of Uncertainty in Artificial Intelligence and Expert Systems , 1987 .

[7]  Richard W. Hamming,et al.  The Art of Probability for Scientists and Engineers , 1991 .

[8]  G. Enderlein Wilks, S. S.: Mathematical Statistics. J. Wiley and Sons, New York–London 1962; 644 S., 98 s , 1964 .

[9]  S. Karlin,et al.  Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Andrew R. Barron,et al.  Information-theoretic asymptotics of Bayes methods , 1990, IEEE Trans. Inf. Theory.

[11]  Donald St. P. Richards,et al.  Multivariate Liouville distributions, III , 1987 .

[12]  I. Good A Bayesian Significance Test for Multinomial Distributions , 1967 .

[13]  Nils J. Nilsson,et al.  The Mathematical Foundations of Learning Machines , 1990 .

[14]  R. Doolittle Computer methods for macromolecular sequence analysis , 1996 .

[15]  Harald Bergstriim Mathematical Theory of Probability and Statistics , 1966 .

[16]  Jun S. Liu,et al.  Bayesian inference on biopolymer models , 1999, Bioinform..

[17]  Peter C. Cheeseman,et al.  An inquiry into computer understanding , 1988, Comput. Intell..

[18]  B. M. Hill,et al.  Zipf's Law and Prior Distributions for the Composition of a Population , 1970 .

[19]  Colin Howson,et al.  The Bayesian Approach , 1998 .

[20]  John C. Wootton,et al.  Non-globular Domains in Protein Sequences: Automated Segmentation Using Complexity Measures , 1994, Comput. Chem..

[21]  M. Verlaan,et al.  Classification of Binary Vectors by Stochastic Complexity , 1997 .

[22]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[23]  Kenneth Lange,et al.  Mathematical and Statistical Methods for Genetic Analysis , 1997 .

[24]  P. V. von Hippel,et al.  Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters. , 1987, Journal of molecular biology.

[25]  S. Altschul Amino acid substitution matrices from an information theoretic perspective , 1991, Journal of Molecular Biology.

[26]  David Heckerman,et al.  Bayesian Networks for Data Mining , 2004, Data Mining and Knowledge Discovery.

[27]  T. Koski,et al.  Bayesian predictiveness, exchangeability and sufficientness in bacterial taxonomy. , 2002, Mathematical biosciences.

[28]  Marti A. Hearst Trends and Controversies: Banter on Bayes: Debating the Usefulness of Bayesian Approaches to solving Practical Problems , 1997, IEEE Expert.

[29]  Richard E. Neapolitan,et al.  Probabilistic reasoning in expert systems - theory and algorithms , 2012 .

[30]  S. Altschul,et al.  Issues in searching molecular sequence databases , 1994, Nature Genetics.

[31]  Jorma Rissanen,et al.  Stochastic Complexity in Learning , 1995, J. Comput. Syst. Sci..