Entropy Analysis: A tool for optimal sustainable use of biorefineries

Increasing interest for use of biomass for biofuels and materials as one measure to mitigate climate change gives increasing reason to make sure that we optimally use available bioresources. Biomass resources should be converted to a maximum of beneficial products with minimum harm to the environment, suggested by the increased interest in biorefinery type processes. This book investigate a tool based on the entropy production of a process for evaluation of biomass conversion processes and to explore its implications as an aggregated measure for sustainability. The Integrated Biomass Utilization System (IBUS) in Denmark and their different processes routes for bioethanol production (with several co-products) from Danish wheat straw are compared by the proposed tool. The impact of integrating the biomass plant with a coal power plant, which is the idea with the IBUS plant, is also analyzed. The results from the case study highlight the importance of well integrated and well optimized systems for utilization of biomass. “Biorefinery thinking” is important.

[1]  Vikram K. Kinra,et al.  On the thermoelastic damping of a one-dimensional inclusion in a uniaxial bar , 1993 .

[2]  Vikram K. Kinra,et al.  Elastothermodynamic Damping of Fiber-Reinforced Metal-Matrix Composites , 1995 .

[3]  Adrian Bejan,et al.  Heat sinks with sloped plate fins in natural and forced convection , 1996 .

[4]  Tobias Richards Recovery of Kraft Black Liquor - Alternative Processes and System Analysis , 2001 .

[5]  Peter R. Bergethon,et al.  Entropy and the Second Law of Thermodynamics , 2010 .

[6]  Tom Addiscott,et al.  Entropy and sustainability , 1995 .

[7]  E. A. Milne,et al.  The Nature of Thermodynamics , 1942, Nature.

[8]  Wolfgang Winkler Fuel Cell Hybrids, Their Thermodynamics and Sustainable Development , 2005 .

[9]  Karl-Henrik Robèrt,et al.  The Natural Step Story: Seeding a Quiet Revolution , 2002 .

[10]  Xavier Gabarrell,et al.  Exergy analysis applied to biodiesel production , 2007 .

[11]  Michael Kamm,et al.  Biorefinery Systems – An Overview , 2008 .

[12]  Y. M. Eyssa,et al.  Thermodynamic optimization of thermal radiation shields for a cryogenic apparatus , 1978 .

[13]  A. Bejan,et al.  Entropy Generation Through Heat and Fluid Flow , 1983 .

[14]  James Gleick,et al.  Chaos, Making a New Science , 1987 .

[15]  A. Marshall,et al.  Principles of Economics , 1891 .

[16]  Ali Bulent Cambel,et al.  Applied Chaos Theory: A Paradigm for Complexity , 1992 .

[17]  P. Perrot,et al.  A To Z Of Thermodynamics , 1998 .

[18]  Arif Hepbasli,et al.  A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future , 2008 .

[19]  William E. Rees,et al.  How big is our ecological footprint , 1993 .

[20]  Ken Geiser Materials Matter: Toward a Sustainable Materials Policy , 2001 .

[21]  Adrian Bejan,et al.  When to defrost a refrigerator, and when to remove the scale from the heat exchanger of a power plant , 1994 .

[22]  V. Kinra,et al.  Thermoelastic Damping of a Laminated Beam in Flexure and Extension , 1993 .

[23]  I. Prigogine,et al.  Book Review: Modern Thermodynamics: From Heat Engines to Dissipative Structures , 1998 .

[24]  S. Lems,et al.  Thermodynamics and the feasibility of sustainable technology Use and abuse of the second law , 2004 .

[25]  Jan Szargut,et al.  Exergy Analysis of Thermal, Chemical, and Metallurgical Processes , 1988 .

[26]  G Finnveden,et al.  Life cycle assessment part 2: current impact assessment practice. , 2004, Environment international.

[27]  Sunil Sarangi,et al.  On the generation of entropy in a counterflow heat exchanger , 1982 .

[28]  Charlotte K. Williams,et al.  The Path Forward for Biofuels and Biomaterials , 2006, Science.

[29]  E. Hornbogen A definition of sustainability based on entropy production by matter and energy , 2003 .

[30]  Dusan P. Sekulic,et al.  Irreversibility phenomena associated with heat transfer and fluid friction in laminar flows through singly connected ducts , 1997 .

[31]  Yuri M. Svirezhev,et al.  Entropy as an indicator of sustainability in agro-ecosystems : North Germany case study , 2000 .

[32]  D W Pennington,et al.  Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications , 2004 .

[33]  Henry A. Bent The Second Law. An Introduction to Classical and Statistical Thermodynamics , 1967 .

[34]  A. Bejan The Concept of Irreversibility in Heat Exchanger Design: Counterflow Heat Exchangers for Gas-to-Gas Applications , 1977 .

[35]  M. Fujiwara Exergy Analysis for the Performance of Solar Collectors , 1983 .

[36]  Shu-Kun Lin,et al.  Modern Thermodynamics: From Heat Engines to Dissipative Structures , 1999, Entropy.

[37]  Marc A. Rosen,et al.  Second‐law analysis: approaches and implications , 1999 .

[38]  Pol Coppin,et al.  Land use impact evaluation in life cycle assessment based on ecosystem thermodynamics , 2006 .

[39]  Kalyan Annamalai,et al.  Optimization of air-cooled condensers , 1987 .

[40]  T. E. Amidon The biorefinery in New York: woody biomass into commercial ethanol , 2006 .

[41]  Christian Krotscheck Measuring eco-sustainability: comparison of mass and/or energy flow based highly aggregated indicators , 1997 .

[42]  D. L. Fenton,et al.  Analysis of thermal systems using the entropy balance method , 1992 .

[43]  Fernando Angulo-Brown,et al.  An ecological optimization criterion for finite‐time heat engines , 1991 .

[44]  Abdulghani A. Al-Farayedhi,et al.  Second-law-based thermoeconomic optimization of a sensible heat thermal energy storage system , 1993 .

[45]  A. Marshall Principles of Economics , .

[46]  Y. Çengel,et al.  Thermodynamics : An Engineering Approach , 1989 .

[47]  A. Eddington The Nature of the Physical World , 1928 .

[48]  Michael Narodoslawsky,et al.  The Sustainable Process Index a new dimension in ecological evaluation , 1996 .

[49]  R. A. Gaggioli,et al.  Economic Sizing of Steam Piping and Insulation , 1979 .

[50]  S. M. Zubair,et al.  Second-law-based thermoeconomic optimization of two-phase heat exchangers , 1987 .

[51]  J. L. Smith,et al.  Optimum temperature staging of cryogenic refrigeration system , 1994 .

[52]  T. R. Griffiths Concise encyclopedia of chemistry: Walter de Gruyter & Co., Berlin. Translated and revised by M. V. Eagleson, 1994. ISBN 3-11-011451-8, $69.95 , 1994 .

[53]  A. Bejan Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes , 1996 .

[54]  DUSáAN P. SEKULICá Entropy Generation in a Heat Exchanger , 1986 .

[55]  Don W. Green,et al.  Perry's Chemical Engineers' Handbook , 2007 .

[56]  R. Zamorano-Ulloa,et al.  Finite-time thermodynamics approach to the superconducting transition , 1993 .

[57]  W. B. Betts,et al.  Uses and Potential of Lignocellulose , 1991 .

[58]  Egon Glesinger,et al.  The coming age of wood , 1949 .

[59]  Vikram K. Kinra,et al.  A Second-Law Analysis of Thermoelastic Damping , 1994 .

[60]  J. Stringer BIOLOGICALLY DERIVED CHEMICALS FIND NICHES , 1996 .

[61]  M. Conti,et al.  Phase change energy storage: Entropy production, irreversibility, and second law efficiency , 1994 .

[62]  G. Alefeld,et al.  Efficiency of compressor heat pumps and refrigerators derived from the second law of thermodynamics , 1987 .

[63]  Henrikke Baumann,et al.  The hitch hiker's guide to LCA : an orientation in life cycle assessment methodology and application , 2004 .

[64]  A. Bergles,et al.  PERFORMANCE EVALUATION CRITERIA FOR ENHANCED HEAT TRANSFER SURFACES , 1974 .

[65]  Ramesh K. Shah,et al.  Costs of Irreversibilities in Heat Exchanger Design , 1983 .

[66]  Ralph P. Overend,et al.  Biomass and renewable fuels , 2001 .

[67]  Bengt Steen,et al.  A Systematic Approach to Environmental Priority Strategies in Product Development (EPS) Version 2000-General System Characteristics , 1999 .

[68]  B. H. Chen,et al.  Performance-evaluation criteria for enhanced heat-transfer surfaces , 1988 .

[69]  L. Beda Thermal physics , 1994 .

[70]  K. Trenberth,et al.  The total mass of the atmosphere , 1994 .

[71]  Changxu Wu,et al.  A performance bound for real OTEC heat engines , 1987 .

[72]  Anne-Marie Tillman,et al.  Miljön och förpackningarna. Livscykelanalyser för förpackningsmaterial - beräkning av miljöbelastning , 1991 .

[73]  S. A. Fartaj,et al.  Comparison of energy, exergy, and entropy balance methods for analysing double‐stage absorption heat transformer cycles , 2004 .

[74]  Aie Biofuels for Transport , 2011 .

[75]  R. Agsten Thermodynamic optimization of current leads into low temperature regions , 1973 .

[76]  John W. Mitchell,et al.  Optimum Heat Power Cycles for Specified Boundary Conditions , 1991 .

[77]  Dusan P. Sekulic,et al.  One approach to irreversibility minimization in compact crossflow heat exchanger design , 1986 .

[78]  Ernie Jowsey,et al.  A new basis for assessing the sustainability of natural resources , 2007 .

[79]  Eric Coatanéa,et al.  Analysis of the concept of sustainability : definition of conditions for using exergy as a uniform environmental metric , 2006 .

[80]  Arthur E. Martell,et al.  Entropy and the second law of thermodynamics. , 1946 .

[81]  Adrian Bejan,et al.  Exergy conservation in parallel thermal insulation systems , 1983 .

[82]  A. Bar-Cohen,et al.  Optimization of the thermal design of a cryogenically-cooled computer , 1992, [1992 Proceedings] Intersociety Conference on Thermal Phenomena in Electronic Systems.

[83]  W. Rees Revisiting carrying capacity: Area-based indicators of sustainability , 1996 .

[84]  Andy Garner,et al.  Transformative technologies : for the forest product sector , 2006 .