Automated image analysis of bacterial colony growth as a tool to study individual lag time distributions of immobilized cells.

[1]  L. Guillier,et al.  Influence of Stress on Individual Lag Time Distributions of Listeria monocytogenes , 2005, Applied and Environmental Microbiology.

[2]  A. Standaert,et al.  Modelling the individual cell lag phase: effect of temperature and pH on the individual cell lag distribution of Listeria monocytogenes. , 2005, International journal of food microbiology.

[3]  Zoltán Kutalik,et al.  Connection between stochastic and deterministic modelling of microbial growth. , 2005, Journal of theoretical biology.

[4]  Konstantinos P. Koutsoumanis,et al.  A comparative study on growth limits of Listeria monocytogenes as affected by temperature, pH and aw when grown in suspension or on a solid surface , 2004 .

[5]  K Bernaerts,et al.  Predictive modelling of the microbial lag phase: a review. , 2004, International journal of food microbiology.

[6]  R T Mitchell,et al.  Listeria monocytogenes and listeriosis: a review of hazard characterisation for use in microbiological risk assessment of foods. , 2004, International journal of food microbiology.

[7]  A. Ballagi,et al.  Observing Growth and Division of Large Numbers of Individual Bacteria by Image Analysis , 2004, Applied and Environmental Microbiology.

[8]  Xuewen Lu,et al.  Modeling Microbial Responses in Food , 2003 .

[9]  József Baranyi,et al.  Distribution of turbidity detection times produced by single cell-generated bacterial populations. , 2003, Journal of microbiological methods.

[10]  G. C. Barker,et al.  Relevance of microbial interactions to predictive microbiology. , 2003, International journal of food microbiology.

[11]  A H Geeraerd,et al.  Modelling the individual cell lag phase. Isolating single cells: protocol development , 2003, Letters in applied microbiology.

[12]  D. Wilson,et al.  The effects of cell immobilization, pH and sucrose on the growth of Listeria monocytogenes Scott A at 10°C , 2003 .

[13]  R. Boom,et al.  Modeling the Interactions of Lactobacillus curvatus Colonies in Solid Medium: Consequences for Food Quality and Safety , 2002, Applied and Environmental Microbiology.

[14]  J. Baranyi Stochastic modelling of bacterial lag phase. , 2002, International journal of food microbiology.

[15]  R. C. Whiting,et al.  Modeling the lag phase of Listeria monocytogenes. , 2002, International journal of food microbiology.

[16]  T. Brocklehurst,et al.  Modelling microbial growth in structured foods: towards a unified approach. , 2002, International journal of food microbiology.

[17]  A. Bos,et al.  Modelling the effect of sublethal injury on the distribution of the lag times of individual cells of Lactobacillus plantarum. , 2002, International journal of food microbiology.

[18]  M. J. Ocio,et al.  The effect of inoculum size and sublethal injury on the ability of Listeria monocytogenes to initiate growth under suboptimal conditions , 2001, Letters in applied microbiology.

[19]  J Baranyi,et al.  The effect of inoculum size on the lag phase of Listeria monocytogenes. , 2001, International journal of food microbiology.

[20]  E. Maltini,et al.  Influence of agar content on the growth parameters of Bacillus cereus. , 2001, International journal of food microbiology.

[21]  J. Augustin,et al.  A model describing the effect of temperature history on lag time for Listeria monocytogenes. , 2000, International journal of food microbiology.

[22]  R. Mckellar,et al.  A comparison of the Bioscreen method and microscopy for the determination of lag times of individual cells of Listeria monocytogenes , 2000, Letters in applied microbiology.

[23]  J. Augustin,et al.  Significance of Inoculum Size in the Lag Time ofListeria monocytogenes , 2000, Applied and Environmental Microbiology.

[24]  R. Mckellar,et al.  A combined discrete-continuous model describing the lag phase of Listeria monocytogenes. , 2000, International journal of food microbiology.

[25]  L. Fielding,et al.  Growth of Listeria monocytogenes and Yersinia enterocolitica colonies under modified atmospheres at 4 and 8 °C using a model food system , 2000, Journal of applied microbiology.

[26]  G. Dykes IMAGE ANALYSIS OF COLONY SIZE FOR INVESTIGATING SUBLETHAL INJURY IN LISTERIA MONOCYTOGENES , 1999 .

[27]  C. Pin,et al.  Estimating Bacterial Growth Parameters by Means of Detection Times , 1999, Applied and Environmental Microbiology.

[28]  Baranyi Comparison of Stochastic and Deterministic Concepts of Bacterial Lag. , 1998, Journal of theoretical biology.

[29]  E. Maltini,et al.  Influence of Structural Properties and Kinetic Constraints on Bacillus cereus Growth , 1998, Applied and Environmental Microbiology.

[30]  H. Lappin-Scott,et al.  The use of an automated growth analyser to measure recovery times of single heat‐injured Salmonella cells , 1997, Journal of applied microbiology.

[31]  T. Brocklehurst,et al.  A model experimental gel-surface for the growth of bacteria on foods , 1997 .

[32]  G. Barker,et al.  Spatial interactions between subsurface bacterial colonies in a model system: a territory model describing the inhibition of Listeria monocytogenes by a nisin-producing lactic acid bacterium. , 1997, Microbiology.

[33]  Jean-Pierre Flandrois,et al.  Differential growth of Listeria monocytogenes at 4 and 8°C: Consequences for the Shelf Life of Chilled Products. , 1996, Journal of food protection.

[34]  L. Rosso,et al.  Relationship between colonial surface and density on agar plate , 1995 .