Wind energy assessment incorporating particle swarm optimization method

Abstract In this paper, wind energy in Taiwan is assessed according to Weibull function. The heuristic searching technique, particle swarm optimization (PSO), is applied originally to find the Weibull parameters. Wind data used is measured by three wind turbines located at different climate regions, i.e. Dayuan, Hengchun and Penghu. The results show that the PSO is powerful in searching parameters. Three stations experiencing stronger northeastern monsoon have more power density in winter. Yearly wind speed distribution in Hengchun matches best with the Weibull function. Weibull shape parameters lie between 2 and 3; scale parameters reveal similar trends with mean speeds by 12% greater. On the basis of Weibull distribution, the order of magnitude is always in speed carrying maximum energy, scale parameter, mean speed and most probable speed for all the stations. There is much room to enhance turbine’s conversion efficiency especially in Penghu according to the analyses of availability and capacity factors. The wind in inland stations could relatively provide more energy near noon. Wind power density presents inverse change with solar irradiance over the year.

[1]  T. W. Lambert,et al.  Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis , 2000 .

[2]  Tsang-Jung Chang,et al.  Assessment of wind characteristics and wind turbine characteristics in Taiwan , 2003 .

[3]  Figen Balo,et al.  Evaluation of wind energy potential and electricity generation at six locations in Turkey , 2009 .

[4]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[5]  Richard A. Johnson Miller & Freund's Probability and Statistics for Engineers , 1993 .

[6]  Lin Lu,et al.  Weather data and probability analysis of hybrid photovoltaic–wind power generation systems in Hong Kong , 2003 .

[7]  Lin Lu,et al.  Investigation on wind power potential on Hong Kong islands—an analysis of wind power and wind turbine characteristics , 2002 .

[8]  E. Akpinar,et al.  An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristics , 2005 .

[9]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[10]  J. C. Lam,et al.  A study of Weibull parameters using long-term wind observations , 2000 .

[11]  Azmi Zakaria,et al.  Wind characteristics of Oman , 2002 .

[12]  A. Celik A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey , 2004 .

[13]  Yoshikazu Fukuyama,et al.  A hybrid particle swarm optimization for distribution state estimation , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[14]  Radian Belu,et al.  Wind characteristics and wind energy potential in western Nevada , 2009 .

[15]  Seyit Ahmet Akdağ,et al.  A new method to estimate Weibull parameters for wind energy applications , 2009 .

[16]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[17]  Fawzi A. L. Jowder,et al.  Wind power analysis and site matching of wind turbine generators in Kingdom of Bahrain , 2009 .

[18]  E. Akpinar,et al.  Determination of the wind energy potential for Maden-Elazig, Turkey , 2004 .

[19]  Hongxing Yang,et al.  Wind power potential and characteristic analysis of the Pearl River Delta region, China , 2006 .

[20]  K. Tar Some statistical characteristics of monthly average wind speed at various heights , 2008 .

[21]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[22]  S. Parsa,et al.  Wind power statistics and an evaluation of wind energy density , 1995 .