Standard Gödel Modal Logics

We prove strong completeness of the □-version and the ◊-version of a Gödel modal logic based on Kripke models where propositions at each world and the accessibility relation are both infinitely valued in the standard Gödel algebra [0,1]. Some asymmetries are revealed: validity in the first logic is reducible to the class of frames having two-valued accessibility relation and this logic does not enjoy the finite model property, while validity in the second logic requires truly fuzzy accessibility relations and this logic has the finite model property. Analogues of the classical modal systems D, T, S4 and S5 are considered also, and the completeness results are extended to languages enriched with a discrete well ordered set of truth constants.

[1]  Jan Pavelka,et al.  On Fuzzy Logic III. Semantical completeness of some many-valued propositional calculi , 1979, Math. Log. Q..

[2]  Melvin Fitting,et al.  Many-valued modal logics , 1991, Fundam. Informaticae.

[3]  Nicola Olivetti,et al.  Proof Systems for a Gödel Modal Logic , 2009, TABLEAUX.

[4]  Lluís Godo,et al.  A Fuzzy Modal Logic for Similarity Reasoning , 1999 .

[5]  K. Dosen,et al.  Models for normal intuitionistic modal logics , 1984 .

[6]  Alfred Horn,et al.  Logic with truth values in A linearly ordered heyting algebra , 1969, Journal of Symbolic Logic.

[7]  Melvin Fitting,et al.  Many-valued modal logics II , 1992 .

[8]  Matthias Baaz,et al.  Compact propositional Godel logics , 1998, Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138).

[9]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[10]  Matthias Baaz,et al.  First-order Gödel logics , 2007, Ann. Pure Appl. Log..

[11]  Frank Wolter,et al.  Superintuitionistic Companions of Classical Modal Logics , 1997, Stud Logica.

[12]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[13]  Josep Maria Font,et al.  Modality and possibility in some intuitionistic modal logics , 1986, Notre Dame J. Formal Log..

[14]  Petr Hájek,et al.  Making fuzzy description logic more general , 2005, Fuzzy Sets Syst..

[15]  京都大学数理解析研究所,et al.  Publications of the Research Institute for Mathematical Sciences , 1965 .

[16]  Carsten Grefe Fischer Servi's Intuitionistic Modal Logic has the Finite Model Property , 1996, Advances in Modal Logic.

[17]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[18]  L. Godo,et al.  Exploring a Syntactic Notion of Modal Many-Valued Logics , 2008, SOCO 2008.