Multilabel, Multiscale Topological Transformation for Cerebral MRI Segmentation Post-processing

Accurate segmentation of cerebral structures remains, after two decades of research, a complex task. In particular, obtaining satisfactory results in terms of topology, in addition to quantitative and geometrically correct properties is still an ongoing issue. In this paper, we investigate how recent advances in multilabel topology and homotopy-type preserving transformations can be involved in the development of multiscale topological modelling of brain structures, and topology-based post-processing of segmentation maps of brain MR images. In this context, a preliminary study and a proof-of-concept are presented.

[1]  Pierre-Louis Bazin,et al.  Topology-Preserving Tissue Classification of Magnetic Resonance Brain Images , 2007, IEEE Transactions on Medical Imaging.

[2]  Gilles Bertrand,et al.  New Characterizations of Simple Points in 2D, 3D, and 4D Discrete Spaces , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  James C. Gee,et al.  Topological Repairing of 3D Digital Images , 2008, Journal of Mathematical Imaging and Vision.

[4]  Isabelle Bloch,et al.  From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations , 1995, Journal of Mathematical Imaging and Vision.

[5]  Isabelle Bloch,et al.  A cellular model for multi-objects multi-dimensional homotopic deformations , 2001, Pattern Recognit..

[6]  Punam K. Saha,et al.  Digital Topology and Geometry in Medical Imaging: A Survey , 2015, IEEE Transactions on Medical Imaging.

[7]  T. Yung Kong,et al.  A digital fundamental group , 1989, Comput. Graph..

[8]  Xiao Han,et al.  A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Jacques-Olivier Lachaud,et al.  Fully deformable 3D digital partition model with topological control , 2011, Pattern Recognit. Lett..

[10]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[11]  Colin Studholme,et al.  Segmentation of the cortex in fetal MRI using a topological model , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[12]  Loïc Mazo A Framework for Label Images , 2012, CTIC.

[13]  Pierre-Louis Bazin,et al.  Topology correction of segmented medical images using a fast marching algorithm , 2007, Comput. Methods Programs Biomed..

[14]  Michel Couprie,et al.  Digital Imaging: A Unified Topological Framework , 2011, Journal of Mathematical Imaging and Vision.

[15]  Isabelle Bloch,et al.  An iterative multi-atlas patch-based approach for cortex segmentation from neonatal MRI , 2018, Comput. Medical Imaging Graph..

[16]  Michel Couprie,et al.  Topology on Digital Label Images , 2012, Journal of Mathematical Imaging and Vision.

[17]  Pierre-Louis Bazin,et al.  Digital Homeomorphisms in Deformable Registration , 2007, IPMI.

[18]  Xiao Han,et al.  Digital Topology on Adaptive Octree Grids , 2009, Journal of Mathematical Imaging and Vision.

[19]  W. Eric L. Grimson,et al.  Active Contours Under Topology Control Genus Preserving Level Sets , 2005, CVBIA.

[20]  Rainer Goebel,et al.  An Efficient Algorithm for Topologically Correct Segmentation of the Cortical Sheet in Anatomical MR Volumes , 2001, NeuroImage.

[21]  Colin Studholme,et al.  A non-local fuzzy segmentation method: Application to brain MRI , 2009, Pattern Recognit..

[22]  Jerry L. Prince,et al.  Digital Topology in Brain Imaging , 2010, IEEE Signal Processing Magazine.

[23]  Dominique Hasboun,et al.  Multi-object Deformable Templates Dedicated to the Segmentation of Brain Deep Structures , 1998, MICCAI.

[24]  Nicolas Passat,et al.  Topology Preserving Warping of 3-D Binary Images According to Continuous One-to-One Mappings , 2011, IEEE Transactions on Image Processing.