Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates

[1]  Y. Gartstein,et al.  Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons. , 2011, Physical review letters.

[2]  M. Stockman Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.

[3]  T. Ebbesen,et al.  Reversible switching of ultrastrong light-molecule coupling , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[4]  Naomi J Halas,et al.  Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity. , 2011, Nano letters.

[5]  L Martin-Moreno,et al.  Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. , 2010, Physical review letters.

[6]  G. Cirmi,et al.  Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures. , 2010, ACS nano.

[7]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[8]  M. Pettersson,et al.  Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules. , 2009, Physical review letters.

[9]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[10]  Peter Nordlander,et al.  Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes. , 2008, Nano letters.

[11]  S. L. Prosvirnin,et al.  Coherent meta-materials and the lasing spaser , 2008, 0802.2519.

[12]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[13]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[14]  D. E. Chang,et al.  A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.

[15]  T. Ebbesen,et al.  Terahertz All‐Optical Molecule‐ Plasmon Modulation , 2006 .

[16]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[17]  Giulio Cerullo,et al.  Two-color pump-probe system broadly tunable over the visible and the near infrared with sub-30fs temporal resolution , 2006 .

[18]  William L. Barnes,et al.  Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays , 2005 .

[19]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[20]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[21]  J. Mugnier,et al.  Strong coupling between surface plasmons and excitons in an organic semiconductor. , 2004, Physical review letters.

[22]  Q-Han Park,et al.  Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. , 2003, Physical review letters.

[23]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[24]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[25]  S. Swain,et al.  Decoherence and coherent population transfer between two coupled systems , 2000 .

[26]  Stephan W Koch,et al.  Nonlinear optics of normal-mode-coupling semiconductor microcavities , 1999 .

[27]  H. Fidder,et al.  Observation of the one‐exciton to two‐exciton transition in a J aggregate , 1993 .

[28]  C. Weisbuch,et al.  Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. , 1992, Physical review letters.

[29]  Thompson,et al.  Observation of normal-mode splitting for an atom in an optical cavity. , 1992, Physical review letters.