Evaluation and optimization of mass transport of redox species in silicon microwire-array

[1]  Nathan S. Lewis,et al.  High-performance Si microwire photovoltaics , 2011 .

[2]  Nathan S Lewis,et al.  Photoelectrochemical hydrogen evolution using Si microwire arrays. , 2011, Journal of the American Chemical Society.

[3]  Nathan S. Lewis,et al.  Si microwire-array solar cells , 2010 .

[4]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[5]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[6]  Nathan S. Lewis,et al.  Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes , 2010, Science.

[7]  H. A. Atwater,et al.  Predicted efficiency of Si wire array solar cells , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[8]  P. Yang,et al.  Nanowire-based all-oxide solar cells. , 2009, Journal of the American Chemical Society.

[9]  Peidong Yang,et al.  Silicon nanowire radial p-n junction solar cells. , 2008, Journal of the American Chemical Society.

[10]  N. Lewis,et al.  Macroporous Silicon as a Model for Silicon Wire Array Solar Cells , 2008 .

[11]  Nathan S Lewis,et al.  High aspect ratio silicon wire array photoelectrochemical cells. , 2007, Journal of the American Chemical Society.

[12]  Nathan S. Lewis,et al.  Principles and Applications of Semiconductor Photoelectrochemistry , 2007 .

[13]  J. Augustynski,et al.  Steady-state operation of porous photoelectrochemical cells under the conditions of mixed diffusional and migrational mass transport , 2006 .

[14]  Lei Yang,et al.  Computer simulations of light scattering and mass transport of dye-sensitized nanocrystalline solar cells , 2006 .

[15]  G. P. Kalaignan,et al.  A review on mass transport in dye-sensitized nanocrystalline solar cells , 2006 .

[16]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[17]  N. Lewis,et al.  Current Density versus Potential Characteristics of Dye-Sensitized Nanostructured Semiconductor Photoelectrodes. 2. Simulations , 2004 .

[18]  Nathan S. Lewis,et al.  Current Density versus Potential Characteristics of Dye-Sensitized Nanostructured Semiconductor Photoelectrodes. 1. Analytical Expressions , 2004 .

[19]  L. Heerman,et al.  Electrochemical nucleation with diffusion-limited growth. Properties and analysis of transients , 2000 .

[20]  L. Heerman,et al.  Theory of the chronoamperometric transient for electrochemical nucleation with diffusion-controlled growth , 1999 .

[21]  N. Lewis,et al.  Free-Energy Dependence of Electron-Transfer Rate Constants at Si/Liquid Interfaces , 1997 .

[22]  M. Grätzel,et al.  On the relevance of mass transport in thin layer nanocrystalline photoelectrochemical solar cells , 1996 .

[23]  N. Lewis,et al.  Preparation and Electrochemical Characterization of Conical and Hemispherical Ultramicroelectrodes , 1989 .

[24]  M. Sluyters-Rehbach,et al.  The theory of chronoamperometry for the investigation of electrocrystallization : Mathematical description and analysis in the case of diffusion-controlled growth , 1987 .

[25]  N. Lewis,et al.  A 14% efficient nonaqueous semiconductor/liquid junction solar cell , 1984 .

[26]  B. Scharifker,et al.  Three-dimensional nucleation with diffusion controlled growth: Part I. Number density of active sites and nucleation rates per site , 1984 .

[27]  B. Parkinson An evaluation of various configurations for photoelectrochemical photovoltaic solar cells , 1982 .

[28]  B. Scharifker,et al.  Electrochemical kinetics at microscopically small electrodes , 1981 .

[29]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .