The Basic Multi-Project Scheduling Problem

In this chapter the Basic Multi-Project Scheduling Problem (BMPSP) is described, an overview of the literature on multi-project scheduling is provided, and a solution approach based on a biased random-key genetic algorithm (BRKGA) is presented. The BMPSP consists in finding a schedule for all the activities belonging to all the projects taking into account the precedence constraints and the availability of resources, while minimizing some measure of performance. The representation of the problem is based on random keys. The BRKGA generates priorities, delay times, and release dates, which are used by a heuristic decoder procedure to construct parameterized active schedules. The performance of the proposed approach is validated on a set of randomly generated problems.

[1]  José Fernando Gonçalves,et al.  A genetic algorithm for lot sizing and scheduling under capacity constraints and allowing backorders , 2011 .

[2]  I. Kurtulus,et al.  Multi-Project Scheduling: Categorization of Heuristic Rules Performance , 1982 .

[3]  James C. Bean,et al.  Genetic Algorithms and Random Keys for Sequencing and Optimization , 1994, INFORMS J. Comput..

[4]  Mauricio G. C. Resende,et al.  An extended Akers graphical method with a biased random-key genetic algorithm for job-shop scheduling , 2014, Int. Trans. Oper. Res..

[5]  R. P. Mohanty,et al.  Multiple projects-multiple resources-constrained scheduling: some studies , 1989 .

[6]  Richard F. Deckro,et al.  A heuristic for multi-project scheduling with limited resources in the housing industry , 1990 .

[7]  Douglas B. Bock,et al.  A Comparison of Due Date Setting, Resource Assignment, and Job Preemption Heuristics for the Multiproject Scheduling Problem* , 1990 .

[8]  Linet Özdamar,et al.  A heuristic treatment of tardiness and net present value criteria in resource constrained project scheduling , 1998 .

[9]  C. Vercellis Constrained multi-project plannings problems: A Lagrangean decomposition approach , 1994 .

[10]  María Pilar Tormos,et al.  Analysis of Scheduling Schemes and Heuristic Rules Performance in Resource-Constrained Multiproject Scheduling , 2001, Ann. Oper. Res..

[11]  Subhash C. Narula,et al.  Multi-Project Scheduling: Analysis of Project Performance , 1985 .

[12]  Thomas E. Morton,et al.  Resource-constrained multi-project scheduling with tardy costs: Comparing myopic, bottleneck, and resource pricing heuristics , 1993 .

[13]  F. Brian Talbot,et al.  Resource-Constrained Project Scheduling with Time-Resource Tradeoffs: The Nonpreemptive Case , 1982 .

[14]  Bruce M. Woodworth,et al.  A HEURISTIC ALGORITHM FOR RESOURCE LEVELING IN MULTI-PROJECT, MULTI-RESOURCE SCHEDULING , 1975 .

[15]  Mauricio G. C. Resende,et al.  A parallel multi-population biased random-key genetic algorithm for a container loading problem , 2012, Comput. Oper. Res..

[16]  Tyson R. Browning,et al.  Resource-Constrained Multi-Project Scheduling: Priority Rule Performance Revisited , 2010 .

[17]  Mauricio G. C. Resende,et al.  A genetic algorithm for the resource constrained multi-project scheduling problem , 2008, Eur. J. Oper. Res..

[18]  W. Spears,et al.  On the Virtues of Parameterized Uniform Crossover , 1995 .

[19]  José Jorge de Magalhães Mendes,et al.  Sistema de apoio à decisão para planeamento de sistemas de produção tipo projecto , 2003 .

[20]  Armin Scholl,et al.  Managing and modelling general resource transfers in (multi-)project scheduling , 2010, OR Spectr..

[21]  Andreas Drexl,et al.  Scheduling of Project Networks by Job Assignment , 1991 .

[22]  Mauricio G. C. Resende,et al.  A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem , 2011, J. Comb. Optim..

[23]  Richard F. Deckro,et al.  A decomposition approach to multi-project scheduling , 1991 .

[24]  Robert C. Ash Activity scheduling in the dynamic multi-project setting: choosing heuristics through deterministic simulation , 1999, WSC '99.

[25]  Philip M. Wolfe,et al.  Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach , 1969 .

[26]  Mauricio G. C. Resende,et al.  Biased random-key genetic algorithms for combinatorial optimization , 2011, J. Heuristics.

[27]  María Pilar Tormos,et al.  A multicriteria heuristic method to improve resource allocation in multiproject scheduling , 2000, Eur. J. Oper. Res..

[28]  K. Raja,et al.  Multi-project Scheduling using a Heuristic and Memetic Alogrithm , 2009 .

[29]  Vincent A. Mabert,et al.  Evaluating project scheduling and due date assignment procedures: an experimental analysis , 1988 .

[30]  Jan Karel Lenstra,et al.  Scheduling subject to resource constraints: classification and complexity , 1983, Discret. Appl. Math..

[31]  José Fernando Gonçalves,et al.  A Hybrid Genetic Algorithm for Assembly Line Balancing , 2002, J. Heuristics.

[32]  Mauricio G. C. Resende,et al.  An evolutionary algorithm for manufacturing cell formation , 2004, Comput. Ind. Eng..

[33]  Mauricio G. C. Resende,et al.  Discrete Optimization A hybrid genetic algorithm for the job shop scheduling problem , 2005 .

[34]  A. J. Clewett,et al.  Introduction to sequencing and scheduling , 1974 .

[35]  Mauricio G. C. Resende,et al.  A biased random key genetic algorithm for 2D and 3D bin packing problems , 2013 .

[36]  Xiaoping Li,et al.  A hybrid genetic algorithm for resource-constrained multi-project scheduling problem with resource transfer time , 2012, 2012 IEEE International Conference on Automation Science and Engineering (CASE).

[37]  Ibrahim S. Kurtulus,et al.  Multiproject scheduling: Analysis of scheduling strategies under unequal delay penalties , 1985 .