MEAN WIDTH AND DIAMETER OF PROPORTIONAL SECTIONS OF A SYMMETRIC CONVEX BODY
暂无分享,去创建一个
[1] D. R. Lewis. Ellipsoids defined by Banach ideal norms , 1979 .
[2] Nicole Tomczak-Jaegermann,et al. Projections onto Hilbertian subspaces of Banach spaces , 1979 .
[3] J. Lindenstrauss,et al. Minkowski sums and symmetrizations , 1988 .
[4] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[5] V. Milman,et al. Random subspaces of proportional dimension of finite dimensional normed spaces: Approach through the isoperimetric inequality , 1985 .
[6] V. Milman,et al. How small can the intersection of a few rotations of a symmetric convex body be , 1997 .
[7] V. Milman. Some applications of duality relations , 1991 .
[8] A. Pajor,et al. Subspaces of small codimension of finite-dimensional Banach spaces , 1986 .
[9] J. Bourgain. On the distribution of polynomials on high dimensional convex sets , 1991 .
[10] G. Pisier,et al. Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert , 1980 .
[11] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[12] S. Dar. Remarks on Bourgain’s Problem on Slicing of Convex Bodies , 1995 .
[13] Apostolos Giannopoulos,et al. On the diameter of proportional sections of a symmetric convex body , 1997 .
[14] Y. Gordon. On Milman's inequality and random subspaces which escape through a mesh in ℝ n , 1988 .