Open string amplitudes in various gauges

Recently, Schnabl constructed the analytic solution of the open string tachyon. Subsequently, the absence of the physical states at the vacuum was proved. The development relies heavily on the use of the gauge condition different from the ordinary one. It was shown that the choice of gauge simplifies the analysis drastically. In this paper we perform the calculation of the amplitudes in Schnabl gauge and find that the off-shell amplitudes is still complicated. To find simple off-shell amplitudes, we choose different gauges for the states and propagators. In particular, we propose a modified Schnabl gauge for the propagator and show that this gauge choice simplifies the calculation of the off-shell amplitudes. We also show that this modified use of the propagator reproduces the on-shell four point amplitudes correctly. We apply this method to open superstring field theory.

[1]  C. N. Yang Solving Open String Field Theory with Special Projectors , 2008 .

[2]  L. Bonora,et al.  Ghost story. I. Wedge states in the oscillator formalism , 2007, 0706.1025.

[3]  T. Erler,et al.  Marginal Solutions for the Superstring , 2007, 0704.0930.

[4]  M. Schnabl,et al.  Proof of vanishing cohomology at the tachyon vacuum , 2006, hep-th/0606142.

[5]  J. Maldacena,et al.  Closed strings from decaying D-branes , 2003, hep-th/0303139.

[6]  T. Erler Split string formalism and the closed string vacuum , 2006, hep-th/0611200.

[7]  Y. Okawa,et al.  Analytic Solutions for Tachyon Condensation with General Projectors , 2006, hep-th/0611110.

[8]  E. Fuchs,et al.  Schnabls L0 operator in the continuous basis , 2006, hep-th/0605254.

[9]  E. Fuchs,et al.  On the validity of the solution of string field theory , 2006, hep-th/0603195.

[10]  Y. Okawa Comments on Schnabl's analytic solution for tachyon condensation in Witten's open string field theory , 2006, hep-th/0603159.

[11]  M. Schnabl Analytic solution for tachyon condensation in open string field theory , 2005, hep-th/0511286.

[12]  A. Sen Tachyon Dynamics in Open String Theory , 2004, hep-th/0410103.

[13]  W. Taylor,et al.  D-Branes, Tachyons, and String Field Theory , 2003, hep-th/0311017.

[14]  N. Berkovits,et al.  Yang-Mills Action from Open Superstring Field Theory , 2003, hep-th/0307019.

[15]  N. Moeller Tachyon condensation in string field theory , 2003 .

[16]  L. Rastelli,et al.  Tachyon potentials, star products and universality , 2000, hep-th/0006240.

[17]  N. Lambert,et al.  Non-Abelian Field Theory of stable non-BPS Branes , 2000, hep-th/0002061.

[18]  N. Berkovits,et al.  Four-point amplitude from open superstring field theory , 1999, hep-th/9912120.

[19]  A. Sen Universality of the tachyon potential , 1999, hep-th/9911116.

[20]  A. Sen Descent Relations among Bosonic D-Branes , 1999, hep-th/9902105.

[21]  B. Zwiebach,et al.  Tensor constructions of open string theories (I) foundations , 1997, hep-th/9705038.

[22]  N. Berkovits Super-Poincaré invariant superstring field theory , 1995, hep-th/9503099.

[23]  B. Zwiebach A proof that Witten's open string theory gives a single cover of moduli space , 1991 .

[24]  V. Kostelecký,et al.  On a nonperturbative vacuum for the open bosonic string , 1990 .

[25]  B. Zwiebach,et al.  Covariant closed string theory cannot be cubic , 1990 .

[26]  R. Bluhm,et al.  Off-shell conformal field theory at the one-loop level , 1989 .

[27]  S. Samuel COVARIANT OFF-SHELL STRING AMPLITUDES , 1988 .

[28]  S. Samuel Off-shell string physics from conformal field theory , 1988 .

[29]  G. Moore,et al.  Strings in the operator formalism , 1988 .

[30]  S. Giddings The Veneziano amplitude from interacting string field theory , 1986 .

[31]  Edward Witten,et al.  Non-commutative geometry and string field theory , 1986 .

[32]  W. Siegel Covariantly second-quantized string , 1984 .

[33]  G. Veneziano Construction of a crossing-simmetric, Regge-behaved amplitude for linearly rising trajectories , 1968 .