Designing templates for the synthesis of microporous solids using de novo molecular design methods

De novo design techniques are used to grow (computationally) candidate template molecules for specific microporous materials. Detailed studies are reported for both EU-1 and chabazite where our simulations are able to rationalise known templates and suggest new templating molecules for the synthesis of such structures.

[1]  Regine Bohacek,et al.  Multiple Highly Diverse Structures Complementary to Enzyme Binding Sites: Results of Extensive Application of a de Novo Design Method Incorporating Combinatorial Growth , 1994 .

[2]  J. Casci Bis-Quaternary Ammonium Compounds as Templates in the Crystallisation of Zeolites and Silica Molecular Sieves , 1986 .

[3]  J. Pérez-Pariente,et al.  A SEM/EDX study of the cobalt distribution in CoAPO-type materials , 1995 .

[4]  John Meurig Thomas,et al.  Influence of Organic Templates on the Structure and on the Concentration of Framework Metal Ions in Microporous Aluminophosphate Catalysts , 1996 .

[5]  Joachim Sauer,et al.  Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 1. Dense and microporous silica , 1994 .

[6]  Valerie J. Gillet,et al.  SPROUT: A program for structure generation , 1993, J. Comput. Aided Mol. Des..

[7]  W. M. Meier,et al.  Atlas of Zeolite Structure Types , 1988 .

[8]  Dewi W. Lewis,et al.  De novo design of structure-directing agents for the synthesis of microporous solids , 1996, Nature.

[9]  Dewi W. Lewis,et al.  Predicting the Templating Ability of Organic Additives for the Synthesis of Microporous Materials , 1995 .

[10]  M. G. Ford,et al.  Structure descriptors for organic templates employed in zeolite synthesis , 1997 .

[11]  Gordon J. Kennedy,et al.  Toward the rational design of zeolite synthesis : the synthesis of zeolite ZSM-18 , 1994 .

[12]  Mark E. Davis,et al.  CIT-1. A new molecular sieve with intersecting pores bounded by 10- and 12-rings , 1995 .

[13]  Hans-Joachim Böhm,et al.  The computer program LUDI: A new method for the de novo design of enzyme inhibitors , 1992, J. Comput. Aided Mol. Des..

[14]  C. Freeman,et al.  Prediction of template location via a combined Monte Carlo–simulated annealing approach , 1996 .

[15]  D. Bibby,et al.  Thermal decomposition of ZSM-5 and silicalite precursors , 1984 .

[16]  Wim G. J. Hol,et al.  In search of new lead compounds for trypanosomiasis drug design: A protein structure-based linked-fragment approach , 1992, J. Comput. Aided Mol. Des..

[17]  J A McCammon,et al.  Computer-aided molecular design. , 1987, Science.

[18]  R. Walton,et al.  Solvothermal synthesis and structural characterisation of the first ammonium cobalt gallium phosphate hydrate, NH4[CoGa2P3O12(H2O)2] , 1996 .

[19]  J. Smith,et al.  Crystal Structure of Chabazite, a Molecular Sieve , 1958, Nature.

[20]  H. Gies Analysis of the guest-molecule host-framework interaction in zeolites with NMR-spectroscopy and X-ray diffraction , 1994 .

[21]  H. Gies,et al.  The structure-controlling role of organic templates for the synthesis of porosils in the systems SiO2/template/H2O , 1992 .

[22]  R. Cramer,et al.  Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. , 1988, Journal of the American Chemical Society.