Occurrence, biochemistry and possible biotechnological application of the 3-hydroxypropionate cycle

[1]  T. Miyake,et al.  Autotrophic carbon dioxide fixation inAcidianus brierleyi , 1996, Archives of Microbiology.

[2]  H. Holo Chloroflexus aurantiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate , 1989, Archives of Microbiology.

[3]  H. Holo,et al.  Autotrophic growth and CO2 fixation of Chloroflexus aurantiacus , 1986, Archives of Microbiology.

[4]  K. Stetter,et al.  Autotrophic CO2 fixation pathways in archaea (Crenarchaeota) , 2003, Archives of Microbiology.

[5]  G. Fuchs,et al.  Characterization of acetyl-CoA/propionyl-CoA carboxylase in Metallosphaera sedula. Carboxylating enzyme in the 3-hydroxypropionate cycle for autotrophic carbon fixation. , 2003, European journal of biochemistry.

[6]  M. Ishii,et al.  Characterization of a Bifunctional Archaeal Acyl Coenzyme A Carboxylase , 2003, Journal of bacteriology.

[7]  A. Busch,et al.  l-Malyl-Coenzyme A Lyase/β-Methylmalyl-Coenzyme A Lyase from Chloroflexus aurantiacus, a Bifunctional Enzyme Involved in Autotrophic CO2 Fixation , 2002, Journal of bacteriology.

[8]  H. Schägger,et al.  Malonyl-Coenzyme A Reductase from Chloroflexus aurantiacus, a Key Enzyme of the 3-Hydroxypropionate Cycle for Autotrophic CO2 Fixation , 2002, Journal of bacteriology.

[9]  G. Fuchs,et al.  Propionyl-Coenzyme A Synthase from Chloroflexus aurantiacus, a Key Enzyme of the 3-Hydroxypropionate Cycle for Autotrophic CO2 Fixation* , 2002, The Journal of Biological Chemistry.

[10]  W. Eisenreich,et al.  A Bicyclic Autotrophic CO2 Fixation Pathway inChloroflexus aurantiacus * , 2002, The Journal of Biological Chemistry.

[11]  W. Eisenreich,et al.  A bicyclic autotrophic CO 2 fixation pathway in Chloroflexus aurantiacus , 2002 .

[12]  W. Eisenreich,et al.  Autotrophic CO2 Fixation by Chloroflexus aurantiacus: Study of Glyoxylate Formation and Assimilation via the 3-Hydroxypropionate Cycle , 2001, Journal of bacteriology.

[13]  G. Waldrop,et al.  Site-directed Mutagenesis of ATP Binding Residues of Biotin Carboxylase , 2001, The Journal of Biological Chemistry.

[14]  J. Cronan,et al.  Inhibition of Escherichia coli Acetyl Coenzyme A Carboxylase by Acyl-Acyl Carrier Protein , 2001 .

[15]  Y. Kimura,et al.  Molecular Cloning and Characterization of Two Genes for the Biotin Carboxylase and Carboxyltransferase Subunits of Acetyl Coenzyme A Carboxylase in Myxococcus xanthus , 2000, Journal of bacteriology.

[16]  G. Waldrop,et al.  Do cysteine 230 and lysine 238 of biotin carboxylase play a role in the activation of biotin? , 2000, Biochemistry.

[17]  P. Norris,et al.  Carboxylase genes of Sulfolobus metallicus , 1999, Archives of Microbiology.

[18]  S. Bell,et al.  Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features. , 1998, Trends in microbiology.

[19]  Y. Kazuta,et al.  Identification of lysine‐238 of Escherichia coli biotin carboxylase as an ATP‐binding residue , 1998, FEBS letters.

[20]  P. Dennis Ancient Ciphers: Translation in Archaea , 1997, Cell.

[21]  D. Gardiol,et al.  The genes encoding the biotin carboxyl carrier protein and biotin carboxylase subunits of Bacillus subtilis acetyl coenzyme A carboxylase, the first enzyme of fatty acid synthesis , 1995, Journal of bacteriology.

[22]  R. Dixon,et al.  Molecular cloning, characterization, and elicitation of acetyl-CoA carboxylase from alfalfa. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[23]  E. Best,et al.  Organization and nucleotide sequences of the genes encoding the biotin carboxyl carrier protein and biotin carboxylase protein of Pseudomonas aeruginosa acetyl coenzyme A carboxylase , 1993, Journal of bacteriology.

[24]  R. Haselkorn,et al.  Genes for two subunits of acetyl coenzyme A carboxylase of Anabaena sp. strain PCC 7120: biotin carboxylase and biotin carboxyl carrier protein , 1993, Journal of bacteriology.

[25]  G. Fuchs,et al.  Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. , 1993, European journal of biochemistry.

[26]  J. Cronan,et al.  The genes encoding the two carboxyltransferase subunits of Escherichia coli acetyl-CoA carboxylase. , 1992, The Journal of biological chemistry.

[27]  W. Eisenreich,et al.  13C-NMR study of autotrophic CO2 fixation pathways in the sulfur-reducing Archaebacterium Thermoproteus neutrophilus and in the phototrophic Eubacterium Chloroflexus aurantiacus. , 1992, European journal of biochemistry.

[28]  J. Cronan,et al.  The gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-CoA carboxylase. , 1992, The Journal of biological chemistry.

[29]  H. Wood,et al.  Evolutionary conservation among biotin enzymes. , 1988, The Journal of biological chemistry.

[30]  W. Zillig,et al.  Transcription termination in the archaebacterium Sulfolobus: signal structures and linkage to transcription initiation. , 1988, Nucleic acids research.

[31]  M. Thomm,et al.  An archaebacterial promoter element for stable RNA genes with homology to the TATA box of higher eukaryotes , 1988, Nucleic Acids Res..

[32]  H. Hummel,et al.  Transcription signals for stable RNA genes in Methanococcus. , 1986, Nucleic acids research.

[33]  O. Kandler,et al.  Evidence for autotrophic CO2 assimilation in Sulfolobus brierleyi via a reductive carboxylic acid pathway , 1981 .