Entanglement Robustness via Spatial Deformation of Identical Particle Wave Functions

We address the problem of entanglement protection against surrounding noise by a procedure suitably exploiting spatial indistinguishability of identical subsystems. To this purpose, we take two initially separated and entangled identical qubits interacting with two independent noisy environments. Three typical models of environments are considered: amplitude damping channel, phase damping channel and depolarizing channel. After the interaction, we deform the wave functions of the two qubits to make them spatially overlap before performing spatially localized operations and classical communication (sLOCC) and eventually computing the entanglement of the resulting state. This way, we show that spatial indistinguishability of identical qubits can be utilized within the sLOCC operational framework to partially recover the quantum correlations spoiled by the environment. A general behavior emerges: the higher the spatial indistinguishability achieved via deformation, the larger the amount of recovered entanglement.

[1]  Radim Filip,et al.  Experimental entanglement distillation of mesoscopic quantum states , 2008, 0812.0709.

[2]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[3]  A. Szameit,et al.  Endurance of quantum coherence due to particle indistinguishability in noisy quantum networks , 2018, npj Quantum Information.

[4]  Yan Wang,et al.  Experimental quantum entanglement and teleportation by tuning remote spatial indistinguishability of independent photons. , 2020, Optics letters.

[5]  Daniel Nigg,et al.  A quantum information processor with trapped ions , 2013, 1308.3096.

[6]  Giuseppe Compagno,et al.  Quantum entanglement of identical particles by standard information-theoretic notions , 2015, Scientific Reports.

[8]  Erika Andersson,et al.  Revival of quantum correlations without system-environment back-action , 2010, 1009.5710.

[9]  Rosario Lo Franco,et al.  Harnessing non-Markovian quantum memory by environmental coupling , 2015, 1506.08293.

[10]  Tsubasa Ichikawa,et al.  Entanglement of indistinguishable particles , 2010, 1009.4147.

[11]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[12]  Joakim Bergli,et al.  Decoherence of a qubit due to either a quantum fluctuator, or classical telegraph noise , 2012, 1206.2174.

[13]  Bei Zeng,et al.  Entanglement in a two-identical-particle system , 2001 .

[14]  Claudia Benedetti,et al.  EFFECT OF MARKOV AND NON-MARKOV CLASSICAL NOISE ON ENTANGLEMENT DYNAMICS , 2012 .

[15]  N. Gisin,et al.  Experimental entanglement distillation and ‘hidden’ non-locality , 2001, Nature.

[16]  John Chiaverini,et al.  Trapped-ion quantum computing: Progress and challenges , 2019, Applied Physics Reviews.

[17]  G. Compagno,et al.  Dynamics of spatially indistinguishable particles and quantum entanglement protection , 2020, Physical Review A.

[18]  L. You,et al.  Quantum correlations in two-boson wave functions , 2001 .

[19]  G. Falci,et al.  Recovering entanglement by local operations , 2012, 1207.3294.

[20]  L. Aolita,et al.  Open-system dynamics of entanglement:a key issues review , 2014, Reports on progress in physics. Physical Society.

[21]  A. Shaham,et al.  Realizing controllable depolarization in photonic quantum-information channels , 2010, 1006.5795.

[22]  Dong Zhou,et al.  Disentanglement and decoherence from classical non-Markovian noise: random telegraph noise , 2009, Quantum Inf. Process..

[23]  G. Florio,et al.  SPATIAL SEPARATION AND ENTANGLEMENT OF IDENTICAL PARTICLES , 2014 .

[24]  Experimental quantum phase discrimination enhanced by controllable indistinguishability-based coherence , 2021, 2103.14802.

[25]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[26]  K. F. Romero,et al.  Simple non-Markovian microscopic models for the depolarizing channel of a single qubit , 2012, 1202.4210.

[27]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[28]  Carlo Sias,et al.  A trapped single ion inside a Bose–Einstein condensate , 2010, Nature.

[29]  GianCarlo Ghirardi,et al.  General criterion for the entanglement of two indistinguishable particles (10 pages) , 2004 .

[30]  A. Buchleitner,et al.  Essential entanglement for atomic and molecular physics , 2010, 1012.3940.

[31]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  M. Katsnelson,et al.  Parity effects in spin decoherence , 2002, quant-ph/0212097.

[33]  Guang-Can Guo,et al.  Experimental demonstration of photonic entanglement collapse and revival. , 2009, Physical review letters.

[34]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[35]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[36]  M. Lewenstein,et al.  Quantum Correlations in Systems of Indistinguishable Particles , 2002, quant-ph/0203060.

[37]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[38]  Gerardo Adesso,et al.  Indistinguishability-enabled coherence for quantum metrology , 2019, Physical Review A.

[39]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[40]  Giuseppe Compagno,et al.  Entanglement dynamics in superconducting qubits affected by local bistable impurities , 2012, 1408.6887.

[41]  A. P. Balachandran,et al.  Entanglement and particle identity: a unifying approach. , 2013, Physical review letters.

[42]  C. Monroe,et al.  Decoherence of quantum superpositions through coupling to engineered reservoirs , 2000, Nature.

[43]  K. Berrada,et al.  a Comparative Study of Negativity and Concurrence Based on Spin Coherent States , 2010 .

[44]  Guang-Can Guo,et al.  Experimental recovery of quantum correlations in absence of system-environment back-action , 2013, Nature Communications.

[45]  J. P. Woerdman,et al.  Entangled mixed-state generation by twin-photon scattering , 2006, quant-ph/0607014.

[46]  G. Falci,et al.  1 / f noise: Implications for solid-state quantum information , 2013, 1304.7925.

[47]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[48]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[49]  S. Maniscalco,et al.  Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective , 2014, Scientific Reports.

[50]  J. Ignacio Cirac,et al.  Quantum correlations in two-fermion systems , 2001 .

[51]  G. Compagno,et al.  Dealing with indistinguishable particles and their entanglement , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[52]  Alexandre Blais,et al.  Quantum information processing with circuit quantum electrodynamics , 2007 .

[53]  Giuseppe Compagno,et al.  Universality of Schmidt decomposition and particle identity , 2016, Scientific Reports.

[54]  Andrea Aiello,et al.  Experimental observation of universality in depolarized light scattering. , 2005, Optics letters.

[55]  T. Qureshi,et al.  Hanbury Brown-Twiss Effect with Wave Packets , 2015, 1509.02221.

[56]  Giuliano Benenti,et al.  Entanglement in helium , 2012, 1204.6667.

[57]  Fernando de Melo,et al.  Entanglement of identical particles and the detection process , 2009, 0902.1684.

[58]  Francesco Petruccione,et al.  Time evolution and decoherence of a spin- 1 2 particle coupled to a spin bath in thermal equilibrium , 2007, 0710.2001.

[59]  D. Lidar,et al.  Unification of dynamical decoupling and the quantum Zeno effect (6 pages) , 2003, quant-ph/0303132.

[60]  Giuseppe Compagno,et al.  Entanglement Trapping in Structured Environments , 2008, 0805.3056.

[61]  P. Zanardi Quantum entanglement in fermionic lattices , 2002 .

[62]  H. Eleuch,et al.  Generation and robustness of bipartite non-classical correlations in two nonlinear microcavities coupled by an optical fiber , 2018 .

[63]  Jun-Hong An,et al.  Mechanism of entanglement preservation , 2009, 0910.5622.

[64]  R. Laflamme,et al.  Randomized benchmarking of single- and multi-qubit control in liquid-state NMR quantum information processing , 2008, 0808.3973.

[65]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[66]  M. P. Almeida,et al.  Environment-Induced Sudden Death of Entanglement , 2007, Science.

[67]  P. Mataloni,et al.  Cut-and-paste restoration of entanglement transmission , 2016, 1604.08350.

[68]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[69]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[70]  Gerardo Adesso,et al.  Entanglement between Identical Particles Is a Useful and Consistent Resource , 2019 .

[71]  Giuseppe Compagno,et al.  Indistinguishability of Elementary Systems as a Resource for Quantum Information Processing. , 2017, Physical review letters.

[72]  B. Garraway,et al.  Sudden death and sudden birth of entanglement in common structured reservoirs , 2008, 0812.3546.

[73]  J. Bird,et al.  A review of progress in the physics of open quantum systems: theory and experiment , 2015, Reports on progress in physics. Physical Society.

[74]  Mediated entanglement and correlations in a star network of interacting spins , 2002, quant-ph/0208114.

[75]  Fabio Sciarrino,et al.  Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics , 2014, Scientific Reports.

[76]  Lorenza Viola,et al.  Random decoupling schemes for quantum dynamical control and error suppression. , 2005, Physical review letters.

[77]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[78]  V. Giovannetti,et al.  Information-capacity description of spin-chain correlations , 2004, quant-ph/0405110.

[79]  E. Andersson,et al.  Dynamics of correlations due to a phase-noisy laser , 2011, 1111.0917.

[80]  Zhong-Xiao Man,et al.  Cavity-based architecture to preserve quantum coherence and entanglement , 2015, Scientific Reports.

[81]  Hyang-Tag Lim,et al.  Entangling bosons through particle indistinguishability and spatial overlap. , 2019, Optics express.

[82]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[83]  Sabrina Maniscalco,et al.  Non-Markovian Dynamics of a Damped Driven Two-State System , 2010, 1001.3564.

[84]  Elsi-Mari Laine,et al.  Colloquium: Non-Markovian dynamics in open quantum systems , 2015, 1505.01385.

[85]  Giuseppe Compagno,et al.  Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling , 2014, 1408.6881.

[86]  S. Maniscalco,et al.  DYNAMICS OF QUANTUM CORRELATIONS IN TWO-QUBIT SYSTEMS WITHIN NON-MARKOVIAN ENVIRONMENTS , 2012, 1205.6419.

[87]  Shi-Jie Wei,et al.  Quantum simulation of quantum channels in nuclear magnetic resonance , 2017, 1704.05593.

[88]  Alicia J. Kollár,et al.  Quantum Simulators: Architectures and Opportunities , 2019, 1912.06938.

[89]  Farzam Nosrati,et al.  Robust entanglement preparation against noise by controlling spatial indistinguishability , 2019 .

[90]  M B Plenio,et al.  Extracting entanglement from identical particles. , 2013, Physical review letters.

[91]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[92]  M Lucamarini,et al.  Experimental inhibition of decoherence on flying qubits via "bang-bang" control. , 2009, Physical review letters.

[93]  Thi Ha Kyaw,et al.  Non-Markovian environments and entanglement preservation , 2010 .

[94]  G. Compagno,et al.  Non-markovian effects on the dynamics of entanglement. , 2007, Physical review letters.

[95]  R. L. Franco,et al.  Activating remote entanglement in a quantum network by local counting of identical particles , 2019, Physical Review A.