Linear Methods for Classification

In this chapter we revisit the classification problem and focus on linear methods for classification. Since our predictor G(x) takes values in a discrete set G, we can always divide the input space into a collection of regions labeled according to the classification. We saw in Chapter 2 that the boundaries of these regions can be rough or smooth, depending on the prediction function. For an important class of procedures, these decision boundaries are linear; this is what we will mean by linear methods for classification.

[1]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[2]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[3]  Michael C. Mozer,et al.  Optimizing Classifier Performance via an Approximation to the Wilcoxon-Mann-Whitney Statistic , 2003, ICML.

[4]  Jürgen Schürmann,et al.  Pattern classification , 2008 .

[5]  JainAnil,et al.  Integrating Faces and Fingerprints for Personal Identification , 1998 .

[6]  Hai Do-Tu,et al.  Learning Algorithms for Nonparametric Solution to the Minimum Error Classification Problem , 1978, IEEE Transactions on Computers.

[7]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[8]  Edward A. Patrick,et al.  A Generalized k-Nearest Neighbor Rule , 1970, Inf. Control..

[9]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[11]  Masaaki Tsujitani,et al.  Neural discriminant analysis , 2000, IEEE Trans. Neural Networks Learn. Syst..

[12]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[13]  Alexander Gammerman,et al.  Ridge Regression Learning Algorithm in Dual Variables , 1998, ICML.

[14]  Konstantinos N. Plataniotis,et al.  Face recognition using kernel direct discriminant analysis algorithms , 2003, IEEE Trans. Neural Networks.

[15]  D. E. Rumelhart,et al.  Learning internal representations by back-propagating errors , 1986 .

[16]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[17]  Kar-Ann Toh,et al.  Fingerprint and speaker verification decisions fusion , 2003, 12th International Conference on Image Analysis and Processing, 2003.Proceedings..

[18]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. L. Hodges,et al.  Discriminatory Analysis - Nonparametric Discrimination: Small Sample Performance , 1952 .

[20]  Arun Ross,et al.  Information fusion in biometrics , 2003, Pattern Recognit. Lett..

[21]  J. Ross Quinlan,et al.  Learning Efficient Classification Procedures and Their Application to Chess End Games , 1983 .

[22]  John Holland,et al.  Adaptation in Natural and Artificial Sys-tems: An Introductory Analysis with Applications to Biology , 1975 .

[23]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[24]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[25]  E. Mayoraz,et al.  Fusion of face and speech data for person identity verification , 1999, IEEE Trans. Neural Networks.

[26]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[27]  Jack Sklansky,et al.  Linear classifiers by window training , 1995, IEEE Trans. Syst. Man Cybern..

[28]  James C. Bezdek,et al.  Decision templates for multiple classifier fusion: an experimental comparison , 2001, Pattern Recognit..