A 1.3 mW 48 MHz 4 Channel MIMO Baseband Receiver With 65 dB Harmonic Rejection and 48.5 dB Spatial Signal Separation

A four-channel multi-input multi-output (MIMO) complex baseband receiver for spectrum and space-aware cognitive radio applications is presented. The MIMO baseband receiver comprises a capacitive harmonic-rejection downconverting mixer (HRM) receiver and a signal-separation multi-input multi-output analog core (MAC) on a single integrated circuit. The HRM receiver performs frequency selection of the incoming RF signals by programmable spectral downconversion and filtering with minimal harmonic folding. The subsequent MAC separates the spectrally overlapping but spatially diverse signals by weighted complex matrix multiplication. The entire signal path is implemented using energy-efficient gm-C analog circuits with digitally controlled capacitive weighting for configurable baseband down-/upconversion ranging from -24 to +24 MHz in the HRM, and programmable spatial filtering with 4×4 complex (8×8 real) 14-bit coefficients in the MAC. Measurements demonstrate greater than 65 dB harmonic-folding rejection by the HRM, and greater than 48.5 dB spatial signal separation by the MAC. The 65 nm CMOS IC occupies 3.27 mm2 active area, and consumes 480 μW digital power at 45 MHz LO and 840 μW analog power at 3 MHz baseband from a 1.2 V supply.

[1]  T. R. Viswanathan,et al.  Harmonic Rejection Mixing Techniques Using Clock-Gating , 2013, IEEE Journal of Solid-State Circuits.

[2]  Peter J. Vancorenland,et al.  A harmonic rejection mixer robust to RF device mismatches , 2011, 2011 IEEE International Solid-State Circuits Conference.

[3]  Jonathan Borremans,et al.  IIP2 and HR calibration for an 8-phase harmonic recombination receiver in 28nm , 2013, Proceedings of the IEEE 2013 Custom Integrated Circuits Conference.

[4]  C.W. Bostian,et al.  Analog to Digital Converters , 2020, Embedded Systems Design using the MSP430FR2355 LaunchPad™.

[5]  Jean-Paul M. G. Linnartz,et al.  Full MIMO Spatial Filtering Approach for Dynamic Range Reduction in Wideband Cognitive Radios , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Yi-Gyeong Kim,et al.  A 105dB-gain 500MHz-bandwidth 0.1Ω-output-impedance amplifier for an amplitude modulator in 65nm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[7]  Jongkil Park,et al.  A 7.86 mW +12.5 dBm in-band IIP3 8-to-320 MHz capacitive harmonic rejection mixer in 65nm CMOS , 2014, ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC).

[8]  Behzad Razavi Challenges in the design of cognitive radios1 , 2009, 2009 IEEE Custom Integrated Circuits Conference.

[9]  Simon Haykin,et al.  Cognitive radio: brain-empowered wireless communications , 2005, IEEE Journal on Selected Areas in Communications.

[10]  Alle-Jan van der Veen,et al.  Analog Beamforming in MIMO Communications With Phase Shift Networks and Online Channel Estimation , 2010, IEEE Transactions on Signal Processing.

[11]  Danijela Cabric,et al.  Spatial filtering approach for dynamic range reduction in cognitive radios , 2010, 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[12]  Kathleen Philips,et al.  26.2 A 5.5fJ/conv-step 6.4MS/S 13b SAR ADC utilizing a redundancy-facilitated background error-detection-and-correction scheme , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[13]  David Murphy,et al.  A Noise-Cancelling Receiver Resilient to Large Harmonic Blockers , 2015, IEEE Journal of Solid-State Circuits.

[14]  Li Lin,et al.  A 1.75 GHz highly-integrated narrow-band CMOS transmitter with harmonic-rejection mixers , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[15]  Eric A. M. Klumperink,et al.  Simultaneous spatial and frequency-domain filtering at the antenna inputs achieving up to +10dBm out-of-band/beam P1dB , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[16]  Bang-Sup Song Micro CMOS design , 2012 .

[17]  Danijela Cabric,et al.  Energy-Efficient Processor for Blind Signal Classification in Cognitive Radio Networks , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Gert Cauwenberghs,et al.  Gradient Flow Independent Component Analysis in Micropower VLSI , 2005, NIPS.

[19]  Robert H. Walden,et al.  Analog-to-digital converter survey and analysis , 1999, IEEE J. Sel. Areas Commun..

[20]  Behzad Razavi,et al.  Cognitive Radio Design Challenges and Techniques , 2010, IEEE Journal of Solid-State Circuits.

[21]  Dejan Markovic,et al.  A 500MHz blind classification processor for cognitive radios in 40nm CMOS , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[22]  Jonathan Borremans,et al.  A 0.9V low-power 0.4–6GHz linear SDR receiver in 28nm CMOS , 2013, 2013 Symposium on VLSI Circuits.

[23]  David Murphy,et al.  3.6 A noise-cancelling receiver with enhanced resilience to harmonic blockers , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[24]  Ramesh Harjani,et al.  A throughput-agnostic 11.9–13.6GOPS/mW multi-signal classification SoC for cognitive radios in 40nm CMOS , 2015, 2015 Symposium on VLSI Circuits (VLSI Circuits).

[25]  Lawrence E. Larson,et al.  Broadband Synthetic Transmission-Line N-Path Filter Design , 2015, IEEE Transactions on Microwave Theory and Techniques.

[26]  Gert Cauwenberghs,et al.  A CMOS 4-channel MIMO baseband receiver with 65dB harmonic rejection over 48MHz and 50dB spatial signal separation over 3MHz at 1.3mW , 2015, 2015 Symposium on VLSI Circuits (VLSI Circuits).