Polymer-protected sub-2-nm-nanogap fabrication for biological sensing in near-physiological conditions.

Polymer-protected sub-2-nm nanogaps that are fabricated via a novel electrical stressing approach exhibit substantial ionic-current reduction in near-physiological conditions. These devices enable direct DNA detection in aqueous solution by utilizing assembly of oligonucleotide-modified gold nanoparticles to the nanogap.

[1]  Wei Chen,et al.  Coulomb blockade at 77 K in nanoscale metallic islands in a lateral nanostructure , 1995 .

[2]  S. Chou,et al.  Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis. , 2008, Nano letters.

[3]  Wei Xu,et al.  Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. , 2009, Angewandte Chemie.

[4]  Yidong Chen,et al.  Amine-modified random primers to label probes for DNA microarrays. , 2002 .

[5]  G. Ramsay DNA chips: State-of-the art , 1998, Nature Biotechnology.

[6]  D. L. Klein,et al.  An approach to electrical studies of single nanocrystals , 1996 .

[7]  J. E. Mattson,et al.  A Group-IV Ferromagnetic Semiconductor: MnxGe1−x , 2002, Science.

[8]  M. Reed,et al.  Conductance of a Molecular Junction , 1997 .

[9]  Joel Voldman,et al.  Assembly of metal nanoparticles into nanogaps. , 2007, Small.

[10]  C. Mirkin,et al.  Array-Based Electrical Detection of DNA with Nanoparticle Probes , 2002, Science.

[11]  Yuyuan Tian,et al.  Direct conductance measurement of single DNA molecules in aqueous solution , 2004 .

[12]  Self-aligned nanolithography in a nanogap. , 2009, Nano letters.

[13]  S. P. Fodor,et al.  Multiplexed biochemical assays with biological chips , 1993, Nature.

[14]  D. Caruana,et al.  Enzyme-Amplified Amperometric Detection of Hybridization and of a Single Base Pair Mutation in an 18 Base Oligonucleotide on a 7 µm Diameter Microelectrode , 1999 .

[15]  Mark A Ratner,et al.  Top-down meets bottom-up: dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits. , 2005, Small.

[16]  Mark E. Welland,et al.  Analysis of failure mechanisms in electrically stressed Au nanowires , 1999 .

[17]  C. Dekker,et al.  Direct measurement of electrical transport through DNA molecules , 2000, Nature.

[18]  Xiaogang Liu,et al.  One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. , 2008, Journal of the American Chemical Society.

[19]  Mosong Cheng,et al.  Patterning a nanowell sensor biochip for specific and rapid detection of bacteria , 2008 .

[20]  Yuji Miyahara,et al.  DNA Analysis Chip Based on Field-Effect Transistors , 2005 .

[21]  Chad A Mirkin,et al.  On-Wire Lithography , 2005, Science.

[22]  Weihong Tan,et al.  Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. , 2003, Journal of the American Chemical Society.

[23]  G. McCarty Molecular lithography for wafer-scale fabrication of molecular junctions , 2004 .

[24]  Ping-Hei Chen,et al.  Electrical Detection of Protein Using Gold Nanoparticles and Nanogap Electrodes , 2004, Digest of Papers. 2004 International Microprocesses and Nanotechnology Conference, 2004..

[25]  H. Metzner,et al.  Glass transition temperature and thermal expansion behaviour of polymer films investigated by variable temperature spectroscopic ellipsometry , 1998 .

[26]  Marija Drndic,et al.  Nanogaps by direct lithography for high-resolution imaging and electronic characterization of nanostructures , 2006 .

[27]  Denis Flandre,et al.  Sensitive DNA electrical detection based on interdigitated Al/Al2O3 microelectrodes , 2004 .

[28]  Masato Saito,et al.  Deoxyribonucleic acid sensing device with 40-nm-gap-electrodes fabricated by low-cost conventional techniques , 2004 .

[29]  Shih-Ming Yang,et al.  DNA hybridization measurement by self-sensing piezoresistive microcantilevers in CMOS biosensor , 2008 .

[30]  D. E. Smith,et al.  Controlled fabrication of nanogaps in ambient environment for molecular electronics , 2005, cond-mat/0504112.

[31]  Ferdinand Kuemmeth,et al.  Imaging electromigration during the formation of break junctions. , 2007, Nano letters.

[32]  Yuyuan Tian,et al.  Measurement of Single Molecule Conductance: Benzenedithiol and Benzenedimethanethiol , 2004 .

[33]  E. Winzeler,et al.  Genomics, gene expression and DNA arrays , 2000, Nature.

[34]  C. Mirkin,et al.  Fabrication of sub-50-nm solid-state nanostructures on the basis of dip-pen nanolithography , 2003 .

[35]  J. Fuhrmann,et al.  Effect of Thermal Degradation on Glass Transition Temperature of PMMA , 2004 .

[36]  S. J. van der Molen,et al.  The role of Joule heating in the formation of nanogaps by electromigration , 2005, cond-mat/0510385.

[37]  Robert C. White,et al.  Thermal ablation of PMMA for water release using a microheater , 2006 .

[38]  Wei Xu,et al.  Multiplex single-nucleotide polymorphism typing by nanoparticle-coupled DNA-templated reactions. , 2009, Journal of the American Chemical Society.

[39]  Chad A. Mirkin,et al.  One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes , 1998 .

[40]  Ping-Hei Chen,et al.  Development of an integrated CMOS DNA detection biochip , 2007 .

[41]  S. Wind,et al.  1- to 2-nm-wide nanogaps fabricated with single-walled carbon nanotube shadow masks , 2006 .

[42]  A. Merkoçi,et al.  Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods. , 2000, Biosensors & bioelectronics.

[43]  T. Fujisawa,et al.  Voltage-pulse-induced electromigration , 2008, Nanotechnology.

[44]  Clean electromigrated nanogaps imaged by transmission electron microscopy. , 2006, Nano letters.