Candidate iO from Homomorphic Encryption Schemes

We propose a new approach to construct general-purpose indistinguishability obfuscation (iO). Our construction is obtained via a new intermediate primitive that we call split fully-homomorphic encryption (split FHE), which we show to be sufficient for constructing iO. Specifically, split FHE is FHE where decryption takes the following two-step syntactic form: (i) A secret decryption step uses the secret key and produces a hint which is (asymptotically) shorter than the length of the encrypted message, and (ii) a public decryption step that only requires the ciphertext and the previously generated hint (and not the entire secret key), and recovers the encrypted message. In terms of security, the hints for a set of ciphertexts should not allow one to violate semantic security for any other ciphertexts.

[1]  Jean-Sébastien Coron,et al.  Practical Multilinear Maps over the Integers , 2013, CRYPTO.

[2]  Giulio Malavolta,et al.  Homomorphic Time-Lock Puzzles and Applications , 2019, IACR Cryptol. ePrint Arch..

[3]  Amos Fiat,et al.  How to Prove Yourself: Practical Solutions to Identification and Signature Problems , 1986, CRYPTO.

[4]  Zvika Brakerski,et al.  Leveraging Linear Decryption: Rate-1 Fully-Homomorphic Encryption and Time-Lock Puzzles , 2019, IACR Cryptol. ePrint Arch..

[5]  Pravesh Kothari,et al.  Sum-of-Squares Meets Program Obfuscation, Revisited , 2019, IACR Cryptol. ePrint Arch..

[6]  Vinod Vaikuntanathan,et al.  Limits on the Locality of Pseudorandom Generators and Applications to Indistinguishability Obfuscation , 2017, TCC.

[7]  Brent Waters,et al.  Candidate Indistinguishability Obfuscation and Functional Encryption for all Circuits , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[8]  Guy N. Rothblum,et al.  Virtual Black-Box Obfuscation for All Circuits via Generic Graded Encoding , 2014, TCC.

[9]  Pascal Paillier,et al.  Public-Key Cryptosystems Based on Composite Degree Residuosity Classes , 1999, EUROCRYPT.

[10]  Eric Miles,et al.  Annihilation Attacks for Multilinear Maps: Cryptanalysis of Indistinguishability Obfuscation over GGH13 , 2016, CRYPTO.

[11]  Yael Tauman Kalai,et al.  Protecting Obfuscation against Algebraic Attacks , 2014, EUROCRYPT.

[12]  Craig Gentry,et al.  Obfuscation using Tensor Products , 2018, Electron. Colloquium Comput. Complex..

[13]  Chris Peikert,et al.  Faster Bootstrapping with Polynomial Error , 2014, CRYPTO.

[14]  Huijia Lin,et al.  Indistinguishability Obfuscation from SXDH on 5-Linear Maps and Locality-5 PRGs , 2017, CRYPTO.

[15]  Yuval Ishai,et al.  How to Garble Arithmetic Circuits , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[16]  Ivan Damgård,et al.  A Generalisation, a Simplification and Some Applications of Paillier's Probabilistic Public-Key System , 2001, Public Key Cryptography.

[17]  Vinod Vaikuntanathan,et al.  Lattice-based FHE as secure as PKE , 2014, IACR Cryptol. ePrint Arch..

[18]  Craig Gentry,et al.  Fully homomorphic encryption using ideal lattices , 2009, STOC '09.

[19]  Abhishek Jain,et al.  Indistinguishability Obfuscation from Compact Functional Encryption , 2015, CRYPTO.

[20]  Shweta Agrawal,et al.  Indistinguishability Obfuscation Without Multilinear Maps: New Methods for Bootstrapping and Instantiation , 2019, EUROCRYPT.

[21]  Brent Waters,et al.  How to use indistinguishability obfuscation: deniable encryption, and more , 2014, IACR Cryptol. ePrint Arch..

[22]  Nir Bitansky,et al.  From Cryptomania to Obfustopia Through Secret-Key Functional Encryption , 2016, Journal of Cryptology.

[23]  Pravesh Kothari,et al.  Limits on Low-Degree Pseudorandom Generators (Or: Sum-of-Squares Meets Program Obfuscation) , 2018, Electron. Colloquium Comput. Complex..

[24]  Brice Minaud,et al.  Cryptanalysis of the New CLT Multilinear Map over the Integers , 2016, EUROCRYPT.

[25]  Craig Gentry,et al.  Candidate Multilinear Maps from Ideal Lattices , 2013, EUROCRYPT.

[26]  Yupu Hu,et al.  Cryptanalysis of GGH Map , 2016, EUROCRYPT.

[27]  Huijia Lin,et al.  Indistinguishability Obfuscation from Constant-Degree Graded Encoding Schemes , 2016, EUROCRYPT.

[28]  Andrew Chi-Chih Yao,et al.  How to generate and exchange secrets , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[29]  Jung Hee Cheon,et al.  Cryptanalysis of the Multilinear Map over the Integers , 2014, EUROCRYPT.

[30]  Vinod Vaikuntanathan,et al.  Indistinguishability Obfuscation from DDH-Like Assumptions on Constant-Degree Graded Encodings , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[31]  Amit Sahai,et al.  Projective Arithmetic Functional Encryption and Indistinguishability Obfuscation from Degree-5 Multilinear Maps , 2017, EUROCRYPT.

[32]  Brent Waters,et al.  Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based , 2013, CRYPTO.

[33]  Samuel B. Williams,et al.  ASSOCIATION FOR COMPUTING MACHINERY , 2000 .

[34]  Nir Bitansky,et al.  Indistinguishability Obfuscation from Functional Encryption , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[35]  Amit Sahai,et al.  Indistinguishability Obfuscation Without Multilinear Maps: New Paradigms via Low Degree Weak Pseudorandomness and Security Amplification , 2019, IACR Cryptol. ePrint Arch..

[36]  Eric Miles,et al.  Secure Obfuscation in a Weak Multilinear Map Model , 2016, TCC.

[37]  Mark Zhandry,et al.  Multiparty Key Exchange, Efficient Traitor Tracing, and More from Indistinguishability Obfuscation , 2014, Algorithmica.

[38]  Oded Regev,et al.  On lattices, learning with errors, random linear codes, and cryptography , 2005, STOC '05.

[39]  Yuval Ishai,et al.  Bounded Key-Dependent Message Security , 2010, IACR Cryptol. ePrint Arch..

[40]  Satoshi Hada,et al.  Zero-Knowledge and Code Obfuscation , 2000, ASIACRYPT.

[41]  Craig Gentry,et al.  i-Hop Homomorphic Encryption and Rerandomizable Yao Circuits , 2010, IACR Cryptol. ePrint Arch..

[42]  Vinod Vaikuntanathan,et al.  Multiparty Computation with Low Communication, Computation and Interaction via Threshold FHE , 2012, EUROCRYPT.

[43]  Sanjam Garg,et al.  When Does Functional Encryption Imply Obfuscation? , 2017, TCC.

[44]  Chris Peikert,et al.  Pseudorandomness of ring-LWE for any ring and modulus , 2017, STOC.

[45]  Amit Sahai,et al.  On the (im)possibility of obfuscating programs , 2001, JACM.

[46]  Mihir Bellare,et al.  Random oracles are practical: a paradigm for designing efficient protocols , 1993, CCS '93.

[47]  Amit Sahai,et al.  How to leverage hardness of constant-degree expanding polynomials over ℝ to build iO , 2018, IACR Cryptol. ePrint Arch..

[48]  Craig Gentry,et al.  Two-Round Secure MPC from Indistinguishability Obfuscation , 2014, TCC.

[49]  Craig Gentry,et al.  Graph-Induced Multilinear Maps from Lattices , 2015, TCC.

[50]  Sanjam Garg,et al.  Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives , 2017, CRYPTO.

[51]  Damien Stehlé,et al.  Sanitization of FHE Ciphertexts , 2016, EUROCRYPT.

[52]  Silvio Micali,et al.  Probabilistic encryption & how to play mental poker keeping secret all partial information , 1982, STOC '82.

[53]  Craig Gentry,et al.  Cryptanalyses of Candidate Branching Program Obfuscators , 2017, EUROCRYPT.

[54]  Amit Sahai,et al.  How to Leverage Hardness of Constant-Degree Expanding Polynomials over \mathbb R R to build i풪 i O , 2019, EUROCRYPT.

[55]  Yael Tauman Kalai,et al.  Reusable garbled circuits and succinct functional encryption , 2013, STOC '13.

[56]  Rafael Pass,et al.  Indistinguishability Obfuscation with Non-trivial Efficiency , 2016, Public Key Cryptography.

[57]  Stefano Tessaro,et al.  Indistinguishability Obfuscation from Trilinear Maps and Block-Wise Local PRGs , 2017, CRYPTO.