Variable impedance actuators: A review

Variable Impedance Actuators (VIA) have received increasing attention in recent years as many novel applications involving interactions with an unknown and dynamic environment including humans require actuators with dynamics that are not well-achieved by classical stiff actuators. This paper presents an overview of the different VIAs developed and proposes a classification based on the principles through which the variable stiffness and damping are achieved. The main classes are active impedance by control, inherent compliance and damping actuators, inertial actuators, and combinations of them, which are then further divided into subclasses. This classification allows for designers of new devices to orientate and take inspiration and users of VIA's to be guided in the design and implementation process for their targeted application.

[1]  M. B. Khamesee,et al.  A novel eddy current damper: theory and experiment , 2009 .

[2]  K A Edge,et al.  Damp-by-wire : Magnetorheological vs. friction dampers , 2005 .

[3]  S. Stramigioli,et al.  The mVSA-UT: A miniaturized differential mechanism for a continuous rotational variable stiffness actuator , 2012, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[4]  R. Ham,et al.  Compliant actuator designs , 2009, IEEE Robotics & Automation Magazine.

[5]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[6]  L. Munari How the body shapes the way we think — a new view of intelligence , 2009 .

[7]  Bram Vanderborght,et al.  Overview of the Lucy Project: Dynamic Stabilization of a Biped Powered by Pneumatic Artificial Muscles , 2008, Adv. Robotics.

[8]  Darwin G. Caldwell,et al.  Dynamic torque control of a hydraulic quadruped robot , 2012, 2012 IEEE International Conference on Robotics and Automation.

[9]  Jiaxin Wang,et al.  A Reinforcement Learning Based Dynamic Walking Control , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[10]  Alin Albu-Schäffer,et al.  State feedback damping control for a multi DOF variable stiffness robot arm , 2011, 2011 IEEE International Conference on Robotics and Automation.

[11]  Patrick van der Smagt,et al.  Antagonism for a Highly Anthropomorphic Hand–Arm System , 2008, Adv. Robotics.

[12]  Hugh Herr,et al.  Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking. , 2009, Journal of rehabilitation research and development.

[13]  D. Rossi,et al.  Dielectric elastomers as electromechanical transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology , 2008 .

[14]  Darwin G. Caldwell,et al.  A nonlinear series elastic actuator for highly dynamic motions , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  François Michaud,et al.  Dual-Differential Rheological Actuator for High-Performance Physical Robotic Interaction , 2010, IEEE Transactions on Robotics.

[16]  Bram Vanderborght,et al.  Proxy-based Sliding Mode Control of a Planar Pneumatic Manipulator , 2009, Int. J. Robotics Res..

[17]  Moritz Diehl,et al.  Fast Motions in Biomechanics and Robotics , 2006 .

[18]  Nicola Vitiello,et al.  NEUROExos: A Powered Elbow Exoskeleton for Physical Rehabilitation , 2013, IEEE Transactions on Robotics.

[19]  Xiaoning Zhang,et al.  An electrorheological fluid damper for robots , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[20]  J. Schuy,et al.  Conception and evaluation of a novel variable torsion stiffness for biomechanical applications , 2012, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[21]  Donald Russell,et al.  Implementation of variable joint stiffness through antagonistic actuation using rolamite springs , 1999 .

[22]  Alin Albu-Schäffer,et al.  Bidirectional antagonistic variable stiffness actuation: Analysis, design & Implementation , 2010, 2010 IEEE International Conference on Robotics and Automation.

[23]  D. Herring,et al.  Adjustable Robotic Tendon using a ‘ Jack Spring ’ TM , 2005 .

[24]  Alessandro De Luca,et al.  Robots with Flexible Elements , 2008, Springer Handbook of Robotics, 2nd Ed..

[25]  Stefano Stramigioli,et al.  The vsaUT-II: A novel rotational variable stiffness actuator , 2012, 2012 IEEE International Conference on Robotics and Automation.

[26]  M. Goldfarb,et al.  Design of a Multidisc Electromechanical Brake , 2011, IEEE/ASME Transactions on Mechatronics.

[27]  Shinichi Hirai,et al.  Microfabricated tunable bending stiffness device , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[28]  Nikolaos G. Tsagarakis,et al.  MACCEPA 2.0: compliant actuator used for energy efficient hopping robot Chobino1D , 2011, Auton. Robots.

[29]  Nikolaos G. Tsagarakis,et al.  Variable stiffness actuators: The user’s point of view , 2015, Int. J. Robotics Res..

[30]  Nikolaos G. Tsagarakis,et al.  A new variable stiffness actuator (CompAct-VSA): Design and modelling , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Etienne Burdet,et al.  A hybrid ultrasonic motor and electrorheological fluid clutch actuator for force-feedback in MRI/fMRI , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[32]  Chee-Meng Chew,et al.  Series damper actuator: a novel force/torque control actuator , 2004, 4th IEEE/RAS International Conference on Humanoid Robots, 2004..

[33]  Neville Hogan,et al.  Robust control of dynamically interacting systems , 1988 .

[34]  Alin Albu-Schäffer,et al.  On joint design with intrinsic variable compliance: derivation of the DLR QA-Joint , 2010, 2010 IEEE International Conference on Robotics and Automation.

[35]  Uri Tasch,et al.  A two-DOF manipulator with adjustable compliance capabilities and comparison with the human finger , 1996, J. Field Robotics.

[36]  Alin Albu-Schäffer,et al.  The DLR lightweight robot: design and control concepts for robots in human environments , 2007, Ind. Robot.

[37]  Fumiya Iida,et al.  Design and Control of a Novel Visco-elastic Braking Mechanism Using HMA , 2011, ICIRA.

[38]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation , 1984, 1984 American Control Conference.

[39]  Keith Robert Pullen,et al.  Kinetic energy storage for vehicles , 2006 .

[40]  Stefano Stramigioli,et al.  Energy-Efficient Variable Stiffness Actuators , 2011, IEEE Transactions on Robotics.

[41]  S. Vijayakumar,et al.  Exploiting variable physical damping in rapid movement tasks , 2012, 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).

[42]  Bram Vanderborght,et al.  Comparison of Mechanical Design and Energy Consumption of Adaptable, Passive-compliant Actuators , 2009, Int. J. Robotics Res..

[43]  Nicholas Roy,et al.  Exploiting Variable Stiffness in Explosive Movement Tasks , 2012 .

[44]  Nikolaos G. Tsagarakis,et al.  AwAS-II: A new Actuator with Adjustable Stiffness based on the novel principle of adaptable pivot point and variable lever ratio , 2011, 2011 IEEE International Conference on Robotics and Automation.

[45]  N. G. Tsagarakis,et al.  Analysis and Development of a Semiactive Damper for Compliant Actuation Systems , 2013, IEEE/ASME Transactions on Mechatronics.

[46]  Shigeki Sugano,et al.  Force Control Of The Robot Finger Joint Equipped With Mechanical Compliance Adjuster , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[47]  Darwin G. Caldwell,et al.  Control of pneumatic muscle actuators , 1995 .

[48]  John C. Dixon,et al.  The shock absorber handbook , 2007 .

[49]  A. Gosline,et al.  Eddy Current Brakes for Haptic Interfaces: Design, Identification, and Control , 2008, IEEE/ASME Transactions on Mechatronics.

[50]  Giorgio Grioli,et al.  VSA-II: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans , 2008, 2008 IEEE International Conference on Robotics and Automation.

[51]  Jae-Sung Bae,et al.  Improved Concept and Model of Eddy Current Damper , 2006 .

[52]  Alin Albu-Schäffer,et al.  The KUKA-DLR Lightweight Robot arm - a new reference platform for robotics research and manufacturing , 2010, ISR/ROBOTIK.

[53]  Nikolaos G. Tsagarakis,et al.  A Variable Damping module for Variable Impedance Actuation , 2012, 2012 IEEE International Conference on Robotics and Automation.

[54]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[55]  Jae-Bok Song,et al.  Design and Control of a Variable Stiffness Actuator Based on Adjustable Moment Arm , 2012, IEEE Transactions on Robotics.

[56]  Alfred A. Rizzi,et al.  Elastic Actuation : Potential and Pitfalls ∗ , 2005 .

[57]  Pierre Lopez,et al.  Modeling and control of McKibben artificial muscle robot actuators , 2000 .

[58]  John Kenneth Salisbury,et al.  Playing it safe [human-friendly robots] , 2004, IEEE Robotics & Automation Magazine.

[59]  J. S. Sulzer,et al.  MARIONET: An exotendon-driven rotary series elastic actuator for exerting joint torque , 2005, 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005..

[60]  Marc Denninger,et al.  Preliminary investigation of magneto-rheological fluid durability in continuous slippage clutch , 2013 .

[61]  Nikolaos G. Tsagarakis,et al.  A variable physical damping actuator (VPDA) for compliant robotic joints , 2010, 2010 IEEE International Conference on Robotics and Automation.

[62]  Neil Sclater,et al.  Mechanisms and Mechanical Devices Sourcebook , 1991 .

[63]  Stefano Stramigioli,et al.  Modeling and Control of Complex Physical Systems - The Port-Hamiltonian Approach , 2014 .

[64]  Bram Vanderborght,et al.  Third–Generation Pleated Pneumatic Artificial Muscles for Robotic Applications: Development and Comparison with McKibben Muscle , 2012, Adv. Robotics.

[65]  Bram Vanderborght,et al.  Design and control of a lower limb exoskeleton for robot-assisted gait training , 2009 .

[66]  Donald Russell,et al.  Mechanics and stiffness limitations of a variable stiffness actuator for use in prosthetic limbs , 1999 .

[67]  Jerry E. Pratt,et al.  Exploiting inherent robustness and natural dynamics in the control of bipedal walking robots , 2000 .

[68]  Sungchul Kang,et al.  A Robot Joint With Variable Stiffness Using Leaf Springs , 2011, IEEE Transactions on Robotics.

[69]  Oussama Khatib,et al.  Variable radius pulley design methodology for pneumatic artificial muscle-based antagonistic actuation systems , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[70]  Fumiya Iida,et al.  Running and Walking with Compliant Legs , 2006 .

[71]  Han-Pang Huang,et al.  Design of a new variable stiffness actuator and application for assistive exercise control , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[72]  N. Hogan Adaptive control of mechanical impedance by coactivation of antagonist muscles , 1984 .

[73]  Nikolaos G. Tsagarakis,et al.  A novel actuator with adjustable stiffness (AwAS) , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[74]  Alfred A. Rizzi,et al.  Series compliance for an efficient running gait , 2008, IEEE Robotics & Automation Magazine.

[75]  Bram Vanderborght,et al.  MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot , 2007, Robotics Auton. Syst..

[76]  Jae-Bok Song,et al.  Safe link mechanism based on nonlinear stiffness for collision safety , 2008 .

[77]  Thomas G. Sugar A novel selective compliant actuator , 2002 .

[78]  Michael Levin,et al.  The design and control of an experimental whole-arm manipulator , 1991 .

[79]  Shigeki Sugano,et al.  Design of human symbiotic robot TWENDY-ONE , 2009, 2009 IEEE International Conference on Robotics and Automation.

[80]  Shigeki Sugano,et al.  Design and development of a new robot joint using a mechanical impedance adjuster , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[81]  G. Hirzinger,et al.  A new variable stiffness design: Matching requirements of the next robot generation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[82]  Matthew M. Williamson,et al.  Series elastic actuators , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[83]  Pablo González de Santos,et al.  Design and development of a biomimetic leg using hybrid actuators , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[84]  Nikolaos G. Tsagarakis,et al.  VSA-CubeBot: A modular variable stiffness platform for multiple degrees of freedom robots , 2011, 2011 IEEE International Conference on Robotics and Automation.

[85]  Stefano Stramigioli,et al.  Variable Stiffness Actuators: A Port-Based Power-Flow Analysis , 2012, IEEE Transactions on Robotics.

[86]  T. Milner,et al.  Compensation for mechanically unstable loading in voluntary wrist movement , 2004, Experimental Brain Research.

[87]  Vincent Hayward,et al.  Haptic interface transparency achieved through viscous coupling , 2012, Int. J. Robotics Res..

[88]  Gordon Cheng,et al.  Full-Body Compliant Human–Humanoid Interaction: Balancing in the Presence of Unknown External Forces , 2007, IEEE Transactions on Robotics.

[89]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[90]  Rolf Pfeifer,et al.  How the Body Shapes the Way We Think: A New View of Intelligence (Bradford Books) , 2006 .

[91]  Nikolaos G. Tsagarakis,et al.  A compact compliant actuator (CompAct™) with variable physical damping , 2011, 2011 IEEE International Conference on Robotics and Automation.

[92]  S. Stramigioli,et al.  A concept for a new Energy Efficient actuator , 2008, 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[93]  Nikolaos G. Tsagarakis,et al.  Variable impedance actuators: Moving the robots of tomorrow , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[94]  Nikolaos G. Tsagarakis,et al.  A compact soft actuator unit for small scale human friendly robots , 2009, 2009 IEEE International Conference on Robotics and Automation.

[95]  Oliver Eiberger,et al.  The DLR FSJ: Energy based design of a variable stiffness joint , 2011, 2011 IEEE International Conference on Robotics and Automation.

[96]  Antonio Bicchi,et al.  Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[97]  Alin Albu-Schäffer,et al.  The DLR hand arm system , 2011, 2011 IEEE International Conference on Robotics and Automation.

[98]  Oussama Khatib,et al.  Design and Control of a Bio-inspired Human-friendly Robot , 2010 .

[99]  Giulio Sandini,et al.  Closed loop control of a rotational joint driven by two antagonistic dielectric elastomer actuators , 2010, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[100]  Yangsheng Xu,et al.  Stabilization and path following of a single wheel robot , 2004, IEEE/ASME Transactions on Mechatronics.

[101]  H. Harry Asada,et al.  Direct-Drive Robots: Theory and Practice , 1987 .

[102]  Roger Gassert,et al.  Differential-damper topologies for actuators in rehabilitation robotics , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[103]  Antonio Bicchi,et al.  Optimality principles in variable stiffness control: The VSA hammer , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[104]  S. Kawamura,et al.  Development of passive elements with variable mechanical impedance for wearable robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[105]  Bram Vanderborght,et al.  Second generation pleated pneumatic artificial muscle and its robotic applications , 2006, Adv. Robotics.

[106]  K.W. Hollander,et al.  Adjustable robotic tendon using a 'Jack Spring'/spl trade/ , 2005, 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005..