A theory of the destabilization paradox in non-conservative systems

Summary.In the present paper, a theory is developed qualitatively and quantitatively describing the paradoxical behavior of general non-conservative systems under the action of small dissipative and gyroscopic forces. The problem is investigated by the approach based on the sensitivity analysis of multiple eigenvalues. The movement of eigenvalues of the system in the complex plane is analytically described and interpreted. Approximations of the asymptotic stability domain in the space of the system parameters are obtained. An explicit asymptotic expression for the critical load as a function of dissipation and gyroscopic parameters allowing to calculate a jump in the critical load is derived. The classical Ziegler–Herrmann–Jong pendulum considered as a mechanical application demonstrates the efficiency of the theory.

[1]  H. Ziegler Principles of structural stability , 1968 .

[2]  Ing-Chang Jong,et al.  On the destabilizing effect of damping in nonconservative elastic systems. , 1965 .

[3]  Effect of small dissipative and gyroscopic forces on the stability of nonconservative systems , 2003 .

[4]  L. Gaul,et al.  Effects of damping on mode‐coupling instability in friction induced oscillations , 2003 .

[5]  Anthony Bloch P.S.Krishnaprasad,et al.  Dissipation Induced Instabilities , 1993, chao-dyn/9304005.

[6]  ALEXEI A. MAILYBAEV,et al.  On Singularities of a Boundary of the Stability Domain , 1999, SIAM J. Matrix Anal. Appl..

[7]  P. Lancaster,et al.  Factorization of selfadjoint matrix polynomials with constant signature , 1982 .

[8]  R. Knops,et al.  The Dynamic Stability of Elastic Systems. By V. V. Bolotin. 1964. (Holden-Day)Non-Conservative Problems of the Theory of Elastic Stability. V. V. Bolotin. 1963. (Pergamon) , 1966, The Mathematical Gazette.

[9]  G.T.S. Done,et al.  Damping configurations that have a stabilizing influence on nonconservative systems , 1973 .

[10]  J. Alemán,et al.  Author's address: , 1988 .

[11]  Alexander P. Seyranian,et al.  Sensitivity Analysis of Multiple Eigenvalues , 1993 .

[12]  V. V. Bolotin,et al.  Nonconservative problems of the theory of elastic stability , 1963 .

[13]  H. Troger,et al.  Zur korrekten Modellbildung in der Dynamik diskreter Systeme , 1981 .

[14]  L. G. Lobas The Dynamics of Finite-Dimensional Systems Under Nonconservative Position Forces , 2001 .

[15]  A. P. Seiranyan,et al.  Collision of eigenvalues in linear oscillatory systems , 1994 .

[16]  P. Hagedorn,et al.  Matrix Polynomials Subjected to Small Perturbations , 1986 .

[17]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[18]  George Herrmann,et al.  Some general considerations concerning the destabilizing effect in nonconservative systems , 1965 .

[19]  Anthony N. Kounadis,et al.  On the paradox of the destabilizing effect of damping in non-conservative systems , 1992 .

[20]  Paolo Gallina About the stability of non-conservative undamped systems , 2003 .

[21]  I. C. Jong,et al.  On Nonconservative Stability Problems of Elastic Systems With Slight Damping , 1966 .

[22]  S. Agafonov Stability and Motion Stabilization of Nonconservative Mechanical Systems , 2002 .

[23]  Pauli Pedersen,et al.  Sensitivity analysis for problems of dynamic stability , 1983 .

[24]  H. Bilharz,et al.  Bemerkung zu einem Satze von Hurwitz , 1944 .

[25]  J. A. Walker A note on stabilizing damping configurations for linear nonconservative systems , 1973 .

[26]  V. V. Bolotin,et al.  Effects of damping on stability of elastic systems subjected to nonconservative forces , 1969 .

[27]  How do small velocity-dependent forces (de)stabilize a non-conservative system? , 2003, 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775).

[28]  N. Namachchivaya,et al.  Some aspects of destabilization in reversible dynamical systems with application to follower forces , 1996 .

[29]  H. Ziegler,et al.  Die Stabilitätskriterien der Elastomechanik , 1952 .

[30]  V. Burd Parametric Resonance in Linear Systems , 2007 .

[31]  V. V. Bolotin,et al.  Effect of damping on the postcritical behaviour of autonomous non-conservative systems , 2002 .

[32]  M. Vishik,et al.  THE SOLUTION OF SOME PERTURBATION PROBLEMS FOR MATRICES AND SELFADJOINT OR NON-SELFADJOINT DIFFERENTIAL EQUATIONS I , 1960 .

[33]  Yoshihiko Sugiyama,et al.  Dynamic stability of columns subjected to follower loads : A survey , 2000 .