A threshold mechanism ensures minimum-path flow in lightning discharge

[1]  Shi Li Network Flow , 2021, Algorithms.

[2]  Xin-She Yang,et al.  Nature-Inspired Optimization Algorithms: Challenges and Open Problems , 2020, J. Comput. Sci..

[3]  Franco Blanchini,et al.  Network-decentralised optimisation and control: An explicit saturated solution , 2019, Autom..

[4]  Erik S. Welf,et al.  Nuclear positioning facilitates amoeboid migration along the path of least resistance , 2019, Nature.

[5]  Claudio De Persis,et al.  Optimal regulation of flow networks with transient constraints , 2017, Automatica.

[6]  Giacomo Como,et al.  On resilient control of dynamical flow networks , 2017, Annu. Rev. Control..

[7]  Shuai Li,et al.  Distributed Biased Min-Consensus With Applications to Shortest Path Planning , 2016, IEEE Transactions on Automatic Control.

[8]  Pietro Tesi,et al.  Optimal steady state regulation of distribution networks with input and flow constraints , 2016, 2016 American Control Conference (ACC).

[9]  Franco Blanchini,et al.  Compartmental flow control: Decentralization, robustness and optimality , 2016, Autom..

[10]  Franco Blanchini,et al.  Network-Decentralized Control Strategies for Stabilization , 2015, IEEE Transactions on Automatic Control.

[11]  Vernon Cooray,et al.  An Introduction to Lightning , 2014 .

[12]  Franco Blanchini,et al.  The linear saturated decentralized strategy for constrained flow control is asymptotically optimal , 2013, Autom..

[13]  Arjan van der Schaft,et al.  Load balancing of dynamical distribution networks with flow constraints and unknown in/outflows , 2013, Syst. Control. Lett..

[14]  V.A. Rakov,et al.  Overview of Recent Progress in Lightning Research and Lightning Protection , 2009, IEEE Transactions on Electromagnetic Compatibility.

[15]  I. Sarajcev,et al.  Mathematical model of lightning stroke development , 2008, 2008 16th International Conference on Software, Telecommunications and Computer Networks.

[16]  Vernon Cooray,et al.  A comparison of different approaches to simulate a nonlinear channel resistance in lightning return stroke models , 2008 .

[17]  Silverio Visacro,et al.  A distributed‐circuit return‐stroke model allowing time and height parameter variation to match lightning electromagnetic field waveform signatures , 2005 .

[18]  Gianni Pedrizzetti,et al.  Nature optimizes the swirling flow in the human left ventricle. , 2005, Physical review letters.

[19]  V. Cooray,et al.  On the representation of the lightning return stroke process as a current pulse propagating along a transmission line , 2005, IEEE Transactions on Power Delivery.

[20]  Edward J. Davison,et al.  Decentralized control strategies for dynamic routing , 2002 .

[21]  F. D'Alessandro,et al.  Fractal nature of probabilistic model of lightning discharge , 2001, Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001 (Cat. No.01CH37239).

[22]  Tefko Saracevic,et al.  Information science: What is it? , 1968 .

[23]  Altug Iftar,et al.  A linear programming based decentralized routing controller for congested highways , 1999, Autom..

[24]  A. Percus,et al.  Nature's Way of Optimizing , 1999, Artif. Intell..

[25]  Vladimir A. Rakov,et al.  Review and evaluation of lightning return stroke models including some aspects of their application , 1998 .

[26]  William W. Hager,et al.  A Discrete Model for the Lightning Discharge , 1998 .

[27]  Jaime Sanudo,et al.  Fractal dimension of lightning discharge , 1995 .

[28]  William W. Hager,et al.  The evolution and discharge of electric fields within a thunderstorm , 1989 .

[29]  M. Uman,et al.  The Lightning Discharge , 1987 .

[30]  Jeremy A. Landt,et al.  Three Dimensional Time Domain Modelling of Lightning , 1987, IEEE Transactions on Power Delivery.

[31]  L. Pietronero,et al.  Fractal Dimension of Dielectric Breakdown , 1984 .

[32]  Inge Li Gørtz,et al.  COMP251: Network flows , 2014 .