2.17 Photoactive Materials

[1]  Krzysztof Iniewski,et al.  Energy Harvesting with Functional Materials and Microsystems , 2017 .

[2]  Hilary S. Vogelbaum,et al.  Recently developed high-efficiency organic photoactive materials for printable photovoltaic cells: a mini review , 2017 .

[3]  G. Naterer,et al.  Review of photocatalytic water‐splitting methods for sustainable hydrogen production , 2016 .

[4]  Ibrahim Dincer,et al.  Sustainable Hydrogen Production , 2016 .

[5]  G. Rohrer,et al.  The Orientation Dependence of the Photochemical Activity of α‐Fe2O3 , 2016 .

[6]  I. Dincer,et al.  A review and evaluation of photoelectrode coating materials and methods for photoelectrochemical hydrogen production , 2016 .

[7]  M. Gamal El-Din,et al.  Application of Engineered Si Nanoparticles in Light-Induced Advanced Oxidation Remediation of a Water-Borne Model Contaminant. , 2016, ACS nano.

[8]  G. Sakai,et al.  Peculiar Crystal Growth of the Trivalent Titanium Derived TiO2–SnO2 Precursor under Hydrothermal Conditions , 2016 .

[9]  Vijay Kumar,et al.  Sol gel synthesis of SnO2/CdSe nanocomposites and their optical structural and morphological characterizations , 2016 .

[10]  Rangan Banerjee,et al.  A review of solar thermochemical processes , 2016 .

[11]  M. Arai,et al.  Photocatalytic hydrogen production from aqueous glycerol solution using NiO/TiO2 catalysts: Effects of preparation and reaction conditions , 2016 .

[12]  Lei Zhu,et al.  Novel Bi 2 S 3 /TiO 2 Heterogeneous Catalyst: Photocatalytic Mechanism for Decolorization of Texbrite Dye and Evaluation of Oxygen Species , 2016 .

[13]  K. Sayama Visible-Light-Responsive Photocatalysts and Photoelectrodes Using WO 3 Semiconductors for Degradation of Organics and Water Splitting , 2016 .

[14]  H. Yamashita,et al.  Application of Metal Ion Implantation for the Design of Visible Light-Responsive Titanium Oxide Photocatalysts , 2016 .

[15]  Jiaguo Yu,et al.  Cu 2 O-rGO-CuO Composite: An Effective Z-scheme Visible-Light Photocatalyst , 2015 .

[16]  I. Boz,et al.  Photodegradation of Methylene Blue with Ag2O/TiO2 under Visible Light: Operational Parameters , 2015 .

[17]  A. Kudo,et al.  Utilization of Metal Sulfide Material of (CuGa)(1-x)Zn(2x)S2 Solid Solution with Visible Light Response in Photocatalytic and Photoelectrochemical Solar Water Splitting Systems. , 2015, The journal of physical chemistry letters.

[18]  M. Swaminathan,et al.  Photocatalytic detoxification of Acid Red 18 by modified ZnO catalyst under sunlight irradiation. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[19]  S. Kamarudin,et al.  Hydrogen from photo-catalytic water splitting process: A review , 2015 .

[20]  Haifeng Yu Dancing with Light: Advances in Photofunctional Liquid-Crystalline Materials , 2015 .

[21]  Dongjiang Yang,et al.  Synthesis of ZnFe 2 O 4 /TiO 2 Composite Nanofibers with Enhanced Photoelectrochemical Activity , 2015 .

[22]  Z. Stephens,et al.  Composite WO3/TiO2 nanostructures for high electrochromic activity. , 2015, ACS applied materials & interfaces.

[23]  Qi Li,et al.  Creation of Cu2O@TiO2 composite photocatalysts with p-n heterojunctions formed on exposed Cu2O facets, their energy band alignment study, and their enhanced photocatalytic activity under illumination with visible light. , 2015, ACS applied materials & interfaces.

[24]  Z. Li,et al.  One-dimensional CdS/TiO2 nanofiber composites as efficient visible-light-driven photocatalysts for selective organic transformation: synthesis, characterization, and performance. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[25]  M. Caironi,et al.  Large Area and Flexible Electronics , 2015 .

[26]  R. Amal,et al.  Z-schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator. , 2015, Journal of the American Chemical Society.

[27]  A. Amoozadeh,et al.  Nano-WO3-supported sulfonic acid: New, efficient and high reusable heterogeneous nano catalyst , 2015 .

[28]  Y. Lei,et al.  In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation , 2015, Nano Research.

[29]  I. Dincer,et al.  A review on selected heterogeneous photocatalysts for hydrogen production , 2014 .

[30]  B. Subash,et al.  A novel sunshine active cerium loaded zinc oxide photocatalyst for the effective degradation of AR 27 dye , 2014 .

[31]  I. Dincer,et al.  Analysis and assessment of a continuous-type hybrid photoelectrochemical system for hydrogen production , 2014 .

[32]  B. Rand,et al.  Organic solar cells : fundamentals, devices, and upscaling , 2014 .

[33]  Jason M. Smith,et al.  Nanojunction-mediated photocatalytic enhancement in heterostructured CdS/ZnO, CdSe/ZnO, and CdTe/ZnO nanocrystals. , 2014, Angewandte Chemie.

[34]  Dunwei Wang,et al.  Selective deposition of Ru nanoparticles on TiSi₂ nanonet and its utilization for Li₂O₂ formation and decomposition. , 2014, Journal of the American Chemical Society.

[35]  V. Balzani,et al.  Photochemistry and Photophysics: Concepts, Research, Applications , 2014 .

[36]  Chun Xing Li,et al.  Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite. , 2014, ACS applied materials & interfaces.

[37]  H. Borchert Solar Cells Based on Colloidal Nanocrystals , 2014 .

[38]  Li Xu,et al.  Preparation of sphere-like g-C3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants , 2014 .

[39]  Ibrahim Dincer,et al.  Efficiency assessment of a photo electrochemical chloralkali process for hydrogen and sodium hydroxide production , 2014 .

[40]  E. Uchaker,et al.  Mesoporous TiO2 beads for high efficiency CdS/CdSe quantum dot co-sensitized solar cells , 2014 .

[41]  Xiaolin Zheng,et al.  Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. , 2014, Nano letters.

[42]  J. Shieh,et al.  Characterization of the Microstructure and Photoelectrical Properties of TiO2-SrTiO3 and TiO2-CeO2 Nanocomposites , 2014 .

[43]  M. Subrahmanyam,et al.  Fe/TiO2: A Visible Light Active Photocatalyst for the Continuous Production of Hydrogen from Water Splitting Under Solar Irradiation , 2014, Catalysis Letters.

[44]  Chao Zhang,et al.  Low‐Cost Fully Transparent Ultraviolet Photodetectors Based on Electrospun ZnO‐SnO2 Heterojunction Nanofibers , 2013, Advanced materials.

[45]  Ibrahim Dincer,et al.  Solar Based Hydrogen Production Systems , 2013 .

[46]  I. Dincer,et al.  Comparative environmental impact and efficiency assessment of selected hydrogen production methods , 2013 .

[47]  Misook Kang,et al.  Synthesis of characterization of ZnxTiyS and its photocatalytic activity for hydrogen production from methanol/water photo-splitting , 2013 .

[48]  O. A. Kholdeeva,et al.  Liquid Phase Oxidation via Heterogeneous Catalysis: Organic Synthesis and Industrial Applications , 2013 .

[49]  Zisheng Zhang,et al.  CdS-sensitized K2La2Ti3O10 composite: a new photocatalyst for hydrogen evolution under visible light irradiation , 2013 .

[50]  Jiaguo Yu,et al.  Crystalline phase-dependent photocatalytic water splitting for hydrogen generation on KNbO3 submicro-crystals , 2013 .

[51]  V. Moshnikov,et al.  Surface functional composition and sensor properties of ZnO, Fe2O3, and ZnFe2O4 , 2013 .

[52]  Di Gao,et al.  Hybrid TiO2–SnO2 Nanotube Arrays for Dye-Sensitized Solar Cells , 2013 .

[53]  Jia-lin Sun,et al.  H2 sensing properties of pd modified WO3-Fe2O3 nanostructured composite films prepared by amorphous W-Fe dealloying. , 2013, Journal of nanoscience and nanotechnology.

[54]  G. Lu,et al.  Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution , 2013 .

[55]  D. Njomo,et al.  An overview of hydrogen gas production from solar energy , 2012 .

[56]  Shou-Heng Liu,et al.  One-step fabrication of N-doped mesoporous TiO2 nanoparticles by self-assembly for photocatalytic water splitting under visible light , 2012 .

[57]  Say Chye Joachim Loo,et al.  Mesoporous plasmonic Au-TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction , 2012 .

[58]  I. Dincer,et al.  Sustainable hydrogen production options and the role of IAHE , 2012 .

[59]  Jincai Zhao,et al.  Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants. , 2012, Journal of hazardous materials.

[60]  Ibrahim Dincer,et al.  Comparative life cycle assessment of hydrogen and other selected fuels , 2012 .

[61]  J. Jang,et al.  Heterojunction semiconductors: A strategy to develop efficient photocatalytic materials for visible light water splitting , 2012 .

[62]  G. Naterer,et al.  Life cycle assessment of various hydrogen production methods , 2012 .

[63]  Frank E. Osterloh,et al.  Photocatalytic Water Splitting with Suspended Calcium Niobium Oxides: Why Nanoscale is Better than Bulk − A Kinetic Analysis , 2012 .

[64]  Stefan Fischbach,et al.  Delayed photoelectron transfer in Pt-decorated CdS nanorods under hydrogen generation conditions. , 2012, Small.

[65]  A. Steinfeld,et al.  Solar Energy in Thermochemical Processing , 2012 .

[66]  I. Dincer Green methods for hydrogen production , 2012 .

[67]  Tarek A. Kandiel,et al.  Mesoporous TiO2 nanostructures: a route to minimize Pt loading on titania photocatalysts for hydrogen production. , 2011, Physical chemistry chemical physics : PCCP.

[68]  Ibrahim Dincer,et al.  Sustainable Energy Systems and Applications , 2011 .

[69]  I. Dincer,et al.  Solar hydrogen production: A comparative performance assessment , 2011 .

[70]  Ibrahim Dincer,et al.  Thermodynamic analysis of solar energy use for reforming fuels to hydrogen , 2011 .

[71]  A. Rogach,et al.  Hybrid Colloidal Heterostructures of Anisotropic Semiconductor Nanocrystals Decorated with Noble Metals: Synthesis and Function , 2011 .

[72]  N. Umezawa,et al.  Electronic coupling assembly of semiconductor nanocrystals: self-narrowed band gap to promise solar energy utilization , 2011 .

[73]  L. Robben,et al.  Study of the efficiency of UV and visible-light photocatalytic oxidation of methanol on mesoporous RuO2-TiO2 nanocomposites. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[74]  N. Muradov,et al.  A novel Pd–Cr2O3/CdS photocatalyst for solar hydrogen production using a regenerable sacrificial donor , 2011 .

[75]  E. Kowsari Sonochemically assisted synthesis and application of hollow spheres, hollow prism, and coralline-like ZnO nanophotocatalyst , 2011 .

[76]  Nicolas Bayer Botero,et al.  Heliostat field layout optimization for high-temperature solar thermochemical processing , 2011 .

[77]  Ryu Abe,et al.  Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation , 2010 .

[78]  Ibrahim Dincer,et al.  Exergetic assessment of solar hydrogen production methods , 2010 .

[79]  A. Deshpande,et al.  Critical role of particle size and interfacial properties in the visible light induced splitting of water over the nanocrystallites of supported cadmium sulphide , 2010 .

[80]  Yunfa Chen,et al.  Large-scale preparation of porous ultrathin Ga-doped ZnO nanoneedles from 3D basic zinc carbonate superstructures , 2009, Nanotechnology.

[81]  Danzhen Li,et al.  New Photocatalyst, Sb2S3, for Degradation of Methyl Orange under Visible-Light Irradiation , 2008 .

[82]  L. Gao,et al.  Facile Synthesis and Hierarchical Assembly of Hollow Nickel Oxide Architectures Bearing Enhanced Photocatalytic Properties , 2008 .

[83]  S. K. Pardeshi,et al.  A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy , 2008 .

[84]  Ibrahim Dincer,et al.  Exergy: Energy, Environment and Sustainable Development , 2007 .

[85]  Luis Castañer,et al.  Solar Cells: Materials, Manufacture and Operation , 2004 .

[86]  H. Arakawa,et al.  Dye-sensitized photocatalysts for efficient hydrogen production from aqueous I− solution under visible light irradiation , 2004 .

[87]  Yuexiang Li,et al.  Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy. , 2003, Chemosphere.

[88]  John Meurig Thomas Principles and practice of heterogeneous catalysis , 1996 .

[89]  P. Pichat,et al.  Standardization protocol of process efficiencies and activation parameters in heterogeneous photocatalysis : relative photonic efficiencies ζr , 1996 .

[90]  K. Domen,et al.  Nickel-loaded K4Nb6O17 photocatalyst in the decomposition of H2O into H2 and O2: Structure and reaction mechanism , 1989 .

[91]  D. E. Scaife Oxide semiconductors in photoelectrochemical conversion of solar energy , 1980 .

[92]  Clark W. Bullard,et al.  Net energy analysis : handbook for combining process and input-output analysis , 1976 .

[93]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.