Low-energy electron scattering and resonant states of NO2( X 2A1)

We present new calculations of the integral elastic cross sections for electron scattering from NO2 in its ground electronic state and we also discuss the spatial shapes of its low-energy single-particle resonances. The integral cross sections are obtained as a weighted sum of the singlet and triplet scattering processes and show fair agreement with the existing experiments. The resonant states are analysed via a local model potential discussed here and the results clearly show the feasibility of interpreting known experimental features of NO2 dissociative attachment, and its similarities with the e--O3 data, in terms of the spatial shapes of the metastable single-particle scattering resonances obtained from our calculations.

[1]  N. Sanna,et al.  The separable representation of exchange in electron scattering from polyatomic targets , 2000 .

[2]  R. Lucchese,et al.  ONE-PARTICLE RESONANCES IN LOW-ENERGY ELECTRON SCATTERING FROM C60 , 1999 .

[3]  T. Märk,et al.  LOW ENERGY DISSOCIATIVE ELECTRON ATTACHMENT TO OZONE , 1999 .

[4]  N. Sanna,et al.  Angular distributions and rotational excitations for electron scattering from ozone molecules , 1998 .

[5]  R. Lucchese,et al.  One-electron resonances and computed cross sections in electron scattering from the benzene molecule , 1998 .

[6]  J. Liévin,et al.  Absorption cross section of NO2 by the reflection method from ab initio calculations involving the three low lying electronic states , 1998 .

[7]  M. Allan,et al.  Vibronic coupling and selectivity of vibrational excitation in the negative ion resonances of ozone , 1997 .

[8]  R. Buenker,et al.  Ab initio study of NO2. V. Nonadiabatic vibronic states and levels of the X̃ 2A1/Ã 2B2 conical intersection , 1996 .

[9]  N. Mason,et al.  Dissociative electron attachment (DEA) in ozone 0 - 10 eV , 1996 .

[10]  R. Lucchese,et al.  The elastic scattering of electrons from molecules: II. Molecular features and spatial symmetries of some resonant states , 1996 .

[11]  R. Lucchese,et al.  One-electron resonances in electron scattering from polyatomic molecules , 1996 .

[12]  G. Danby,et al.  The separable representation of exchange in electron - molecule scattering: I. Elastic scattering and rotational excitation , 1996 .

[13]  N. Sanna,et al.  The Ramsauer minimum of methane , 1995 .

[14]  A. Zecca,et al.  Total cross sections for electron scattering on NO2, OCS, SO2 at intermediate energies , 1995 .

[15]  A. Krzysztofowicz,et al.  NO2 total absolute electron-scattering cross sections , 1992 .

[16]  John Horgan,et al.  Profile: Reluctant Revolutionary , 1991 .

[17]  C. Benoit,et al.  Vibrational excitation in e-NO2 collision at low energy (0.3–2.5 eV) , 1991 .

[18]  C. E. Brion,et al.  Inner-shell electron energy loss spectra of NO2 at high resolution: Comparison with multichannel quantum defect calculations of dipole oscillator strengths and transition energies , 1990 .

[19]  J. Rees The Stanford Linear Collider , 1989 .

[20]  Paul J. Crutzen,et al.  The Changing Atmosphere. , 1989 .

[21]  M. L. Dourneuf,et al.  Convergence of the separable exchange approximation in electron-molecule scattering using Slater-type basis sets , 1987 .

[22]  F. Gianturco,et al.  Electron-methane scattering via a parameter-free model interaction , 1987 .

[23]  A. Jain,et al.  The theory of electron scattering from polyatomic molecules , 1986 .

[24]  T. Rescigno,et al.  Separable approximation for exchange interactions in electron-molecule scattering: Numerical stabilization procedures , 1982 .

[25]  T. Rescigno,et al.  Separable approximation for exchange interactions in electron-molecule scattering , 1981 .

[26]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[27]  T. Märk,et al.  Single and double ionization of nitrogen dioxide by electron impact from threshold up to 180 eV , 1980 .

[28]  D. Dill,et al.  Elastic electron scattering by CO2, OCS, and CS2 from 0 to 100 eV , 1979 .

[29]  T. Rescigno Orthogonality constraints in electron scattering by open‐shell targets: Comments on a paper by Riley and Truhlar , 1977 .

[30]  D. Truhlar,et al.  Effects of the Pauli principle on electron scattering by open‐shell targets , 1976 .

[31]  R. Abouaf,et al.  Dissociative attachment in NO2 and CO2 , 1976 .

[32]  A. Petersen A chemically pumped CO2 laser from the CS2/O2 reaction , 1974 .

[33]  R. Celotta,et al.  Electron impact energy loss spectra of the 12B2 ← X̃2A1 1 transition in N02 , 1974 .

[34]  P. Crutzen A discussion of the chemistry of some minor constituents in the stratosphere and troposphere , 1973 .

[35]  G. Schulz,et al.  Electron transmission spectroscopy: Resonances in triatomic molecules and hydrocarbons , 1973 .

[36]  D. Kouri,et al.  NONITERATIVE SOLUTIONS OF INTEGRAL EQUATIONS FOR SCATTERING. I. SINGLE CHANNELS. , 1969 .

[37]  S. L. Altmann,et al.  On the symmetries of spherical harmonics , 1957, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[38]  I. Campbell Energy and the atmosphere , 1977 .

[39]  G. S. Hurst,et al.  Collisions of Monoenergetic Electrons with NO2: Possible Lower Limits to Electron Affinities of O2 and NO , 1969 .

[40]  R. E. Fox Negative Ion Formation in NO2 by Electron Attachment , 1960 .