ON and OFF retinal ganglion cells differentially regulate serotonergic and GABAergic activity in the dorsal raphe nucleus

The dorsal raphe nucleus (DRN), the major source of serotonergic input to the forebrain, receives excitatory input from the retina that can modulate serotonin levels and depressive-like behavior. In the Mongolian gerbil, retinal ganglion cells (RGCs) with alpha-like morphological and Y-like physiological properties innervate the DRN with ON DRN-projecting RGCs out numbering OFF DRN-projecting RGCs. The DRN neurons targeted by ON and OFF RGCs are unknown. To explore retino-raphe anatomical organization, retinal afferents labeled with Cholera toxin B were examined for association with the postsynaptic protein PSD-95. Synaptic associations between retinal afferents and DRN serotonergic and GABAergic neurons were observed. To explore retino-raphe functional organization, light-evoked c-fos expression was examined. Light significantly increased the number of DRN serotonergic and GABAergic cells expressing c-Fos. When ON RGCs were rendered silent while enhancing the firing rate of OFF RGCs, c-Fos expression was greatly increased in DRN serotonergic neurons suggesting that OFF DRN-projecting RGCs predominately activate serotonergic neurons whereas ON DRN-projecting RGCs mainly target GABAergic neurons. Direct glutamatergic retinal input to DRN 5-HT neurons contributes to the complex excitatory drive regulating these cells. Light, via the retinoraphe pathway can modify DRN 5-HT neuron activity which may play a role in modulating affective behavior.

[1]  M. Roche,et al.  Circuitry Underlying Regulation of the Serotonergic System by Swim Stress , 2003, The Journal of Neuroscience.

[2]  M. Soiza-Reilly,et al.  Unraveling the architecture of the dorsal raphe synaptic neuropil using high-resolution neuroanatomy , 2014, Front. Neural Circuits.

[3]  Liang Xu,et al.  Visual response properties of retinal ganglion cells in the royal college of surgeons dystrophic rat. , 2006, Investigative ophthalmology & visual science.

[4]  G. E. Pickard,et al.  Light-Induced Fos Expression in Intrinsically Photosensitive Retinal Ganglion Cells in Melanopsin Knockout (Opn4−/−) Mice , 2009, PloS one.

[5]  G. E. Pickard,et al.  Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells? , 2015, Neuroscience & Biobehavioral Reviews.

[6]  P. Detwiler,et al.  Different Mechanisms Generate Maintained Activity in ON and OFF Retinal Ganglion Cells , 2007, The Journal of Neuroscience.

[7]  B. Jacobs,et al.  Structure and function of the brain serotonin system. , 1992, Physiological reviews.

[8]  L. Chalupa,et al.  The new visual neurosciences , 2014 .

[9]  I. Lucki,et al.  The spectrum of behaviors influenced by serotonin , 1998, Biological Psychiatry.

[10]  S. Sesack,et al.  Prefrontal cortical projections to the rat dorsal raphe nucleus: Ultrastructural features and associations with serotonin and γ‐aminobutyric acid neurons , 2004, The Journal of comparative neurology.

[11]  B. Fyk-Kolodziej,et al.  Immunocytochemical localization of three vesicular glutamate transporters in the cat retina , 2004, The Journal of comparative neurology.

[12]  P. Celada,et al.  Control of Dorsal Raphe Serotonergic Neurons by the Medial Prefrontal Cortex: Involvement of Serotonin-1A, GABAA, and Glutamate Receptors , 2001, The Journal of Neuroscience.

[13]  Xin Wang,et al.  Statistical Wiring of Thalamic Receptive Fields Optimizes Spatial Sampling of the Retinal Image , 2014, Neuron.

[14]  N. Brecha,et al.  Comparison of the ontogeny of the vesicular glutamate transporter 3 (VGLUT3) with VGLUT1 and VGLUT2 in the rat retina , 2008, Brain Research.

[15]  B. Kocsis,et al.  Electrophysiological evidence for convergence of inputs from the medial prefrontal cortex and lateral habenula on single neurons in the dorsal raphe nucleus , 2003, The European journal of neuroscience.

[16]  C. Grimm,et al.  c-fos Controls the “Private Pathway” of Light-Induced Apoptosis of Retinal Photoreceptors , 2000, The Journal of Neuroscience.

[17]  Fair M. Vassoler,et al.  Raphe GABAergic Neurons Mediate the Acquisition of Avoidance after Social Defeat , 2013, The Journal of Neuroscience.

[18]  L. Swanson The Rat Brain in Stereotaxic Coordinates, George Paxinos, Charles Watson (Eds.). Academic Press, San Diego, CA (1982), vii + 153, $35.00, ISBN: 0 125 47620 5 , 1984 .

[19]  J. Sahel,et al.  Distribution of vesicular glutamate transporters in rat and human retina , 2006, Brain Research.

[20]  L. Peichl,et al.  Alpha ganglion cells in mammalian retinae: Common properties, species differences, and some comments on other ganglion cells , 1991, Visual Neuroscience.

[21]  F. Dudek,et al.  5-HT1B Receptor–Mediated Presynaptic Inhibition of Retinal Input to the Suprachiasmatic Nucleus , 1999, The Journal of Neuroscience.

[22]  E. Hamel,et al.  Ipsilateral alterations in tryptophan hydroxylase activity in rat brain after hypothalamic 5,7-di-hydroxytryptamine lesion , 1996, Brain Research.

[23]  L. P. Morin,et al.  The ascending serotonergic system in the hamster: comparison with projections of the dorsal and median raphe nuclei , 1999, Neuroscience.

[24]  Kwok-Fai So,et al.  Direct Retino-Raphe Projection Alters Serotonergic Tone and Affective Behavior , 2013, Neuropsychopharmacology.

[25]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[26]  N. Newman The Visual Neurosciences , 2005 .

[27]  G. Silberberg,et al.  A Whole-Brain Atlas of Inputs to Serotonergic Neurons of the Dorsal and Median Raphe Nuclei , 2014, Neuron.

[28]  Margit Burmeister,et al.  Serotonin transporter gene, stress and raphe–raphe interactions: a molecular mechanism of depression , 2012, Trends in Neurosciences.

[29]  Jeremiah Y. Cohen,et al.  Serotonergic neurons signal reward and punishment on multiple timescales , 2015, eLife.

[30]  M. Barrot,et al.  Induction of ΔFosB in the Periaqueductal Gray by Stress Promotes Active Coping Responses , 2007, Neuron.

[31]  F. Fujiyama,et al.  Changes of immunocytochemical localization of vesicular glutamate transporters in the rat visual system after the retinofugal denervation , 2003, The Journal of comparative neurology.

[32]  K. Commons Locally collateralizing glutamate neurons in the dorsal raphe nucleus responsive to substance P contain vesicular glutamate transporter 3 (VGLUT3) , 2009, Journal of Chemical Neuroanatomy.

[33]  Kwok-Fai So,et al.  Y-Like Retinal Ganglion Cells Innervate the Dorsal Raphe Nucleus in the Mongolian Gerbil (Meriones unguiculatus) , 2011, PloS one.

[34]  W. Foote,et al.  Evidence for a retinal projection to the midbrain raphe of the cat , 1978, Brain Research.

[35]  M. Larkum,et al.  Frontiers in Neural Circuits Neural Circuits Methods Article , 2022 .

[36]  G Chouvet,et al.  Role and Origin of the GABAergic Innervation of Dorsal Raphe Serotonergic Neurons , 2000, The Journal of Neuroscience.

[37]  K. Deisseroth,et al.  A prefrontal cortex–brainstem neuronal projection that controls response to behavioural challenge , 2012, Nature.

[38]  K. Semba,et al.  A direct retinal projection to the dorsal raphe nucleus in the rat , 1994, Brain Research.

[39]  Naoshige Uchida,et al.  Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. , 2014, Cell reports.

[40]  H. Steinbusch,et al.  Serotonin-immunoreactive neurons and their projections in the CNS , 1984 .

[41]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[42]  L. Frishman,et al.  Expression of vesicular glutamate transporter 1 in the mouse retina reveals temporal ordering in development of rod vs. cone and ON vs. OFF circuits , 2003, The Journal of comparative neurology.

[43]  Charles P. Ratliff,et al.  Retina is structured to process an excess of darkness in natural scenes , 2010, Proceedings of the National Academy of Sciences.

[44]  M. Soiza-Reilly,et al.  Quantitative analysis of glutamatergic innervation of the mouse dorsal raphe nucleus using array tomography , 2011, The Journal of comparative neurology.

[45]  M. Soiza-Reilly,et al.  Presynaptic gating of excitation in the dorsal raphe nucleus by GABA , 2013, Proceedings of the National Academy of Sciences.

[46]  E. Paul,et al.  Functional topography of serotonergic systems supports the Deakin/Graeff hypothesis of anxiety and affective disorders , 2013, Journal of psychopharmacology.

[47]  P. Detwiler,et al.  Cellular Origin of Spontaneous Ganglion Cell Spike Activity in Animal Models of Retinitis Pigmentosa , 2010, Journal of ophthalmology.

[48]  Kwoon Y. Wong,et al.  Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons , 2008, Proceedings of the National Academy of Sciences.

[49]  D. Boire,et al.  Retinal projections in the cat: A cholera toxin B subunit study , 2003, Visual Neuroscience.

[50]  H. Steinbusch,et al.  High frequency stimulation of the subthalamic nucleus increases c-fos immunoreactivity in the dorsal raphe nucleus and afferent brain regions. , 2011, Journal of psychiatric research.

[51]  G. E. Pickard,et al.  Photic Entrainment Is Altered in the 5-HT 1B Receptor Knockout Mouse , 2006, Journal of biological rhythms.

[52]  P. Torterolo,et al.  GABAergic neurons of the cat dorsal raphe nucleus express c-fos during carbachol-induced active sleep , 2000, Brain Research.

[53]  Wenyu Fu,et al.  Chemical neuroanatomy of the dorsal raphe nucleus and adjacent structures of the mouse brain , 2010, The Journal of comparative neurology.

[54]  Kwok-Fai So,et al.  The Dorsal Raphe Nucleus Receives Afferents From Alpha-Like Retinal Ganglion Cells and Intrinsically Photosensitive Retinal Ganglion Cells in the Rat. , 2015, Investigative ophthalmology & visual science.

[55]  M. Slaughter,et al.  2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. , 1981, Science.

[56]  M. Pu,et al.  Dendritic Morphology of Caudal Periaqueductal Gray Projecting Retinal Ganglion Cells in Mongolian Gerbil (Meriones unguiculatus) , 2014, PloS one.

[57]  S. Maier,et al.  Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus , 2005, Nature Neuroscience.

[58]  K. Yoshizawa,et al.  [Characteristics of N-methyl-N-nitrosourea-induced retinal degeneration in animals and application for the therapy of human retinitis pigmentosa]. , 2005, Nippon Ganka Gakkai zasshi.

[59]  Eric J. Nestler,et al.  The molecular neurobiology of depression , 2008, Nature.

[60]  K. Herrold Pigmentary degeneration of the retina induced by N-methyl-N-nitrosourea. An experimental study in syrian hamsters. , 1967, Archives of ophthalmology.