Optimum design of a solar ejector refrigeration system for various operating scenarios

Abstract The objective of this work is to examine a solar ejector refrigeration system under various operating scenarios. Evacuated tube collectors of 100 m 2 collecting area coupled to a storage tank of 4 m 3 are selected for feeding the generator of the refrigerator. The system is examined for different evaporator temperatures from −10 °C to 10 °C and for different heat rejection temperatures from 30 °C to 50 °C. In every case, the system is optimized by selecting the optimum ejector design and the optimum generator temperature. Different refrigerants are examined as R123, R245fa, R600a and R134a, while the emphasis is given to the R141b. The innovation of this work is based on the systematic examination and optimization of a great range of operating scenarios giving a clear image for the system performance. According to the final results, the R141b is found to be the best candidate in all the operating scenarios. More specifically, the maximum system COP is found to be 0.234 when the system produces refrigeration at 10 °C and rejects heat to the environment at 30 °C. The optimum generator temperatures are found to be from 114 °C to 157 °C and the cooling capacity is ranged from 1.85 kW up to 23.39 kW. The analysis is performed with a developed model in EES (Engineering Equation Solver) under steady-state conditions.

[1]  Clemens Pollerberg,et al.  Solar driven steam jet ejector chiller , 2009 .

[2]  M. Sokolov,et al.  Solar-powered compression-enhanced ejector air conditioner , 1993 .

[3]  W. Beckman,et al.  Solar Engineering of Thermal Processes , 1985 .

[4]  Yiping Dai,et al.  A theoretical study on a novel combined power and ejector refrigeration cycle , 2009 .

[5]  Sergio Colle,et al.  On the validity of a design method for a solar-assisted ejector cooling system , 2009 .

[6]  Michael Dennis,et al.  A prescription for primary nozzle diameters for solar driven ejectors , 2015 .

[7]  R. Yapıcı,et al.  Experimental investigation on ejector cooling system performance at low generator temperatures and a preliminary study on solar energy , 2012 .

[8]  Clemens Pollerberg,et al.  Experimental study on the performance of a solar driven steam jet ejector chiller , 2008 .

[9]  K. A. Antonopoulos,et al.  Exergetic, energetic and financial evaluation of a solar driven absorption cooling system with various collector types , 2016 .

[10]  Muammer Ozgoren,et al.  Performance of a solar ejector cooling-system in the southern region of Turkey , 2007 .

[11]  Saffa Riffat,et al.  Development of a solar-powered passive ejector cooling system , 2001 .

[12]  Clemens Pollerberg,et al.  Process Steam and Chilled Water Production with CPC-collectors, Steam Jet Ejector Chiller and Latent Heat Storages , 2016 .

[13]  Per Lundqvist,et al.  An exergy analysis of a solar-driven ejector refrigeration system , 2004 .

[14]  Rubén J. Dorantes,et al.  Mathematical simulation of a solar ejector-compression refrigeration system , 1996 .

[15]  Nehad Al-Khalidy,et al.  Experimental investigation of solar concentrating collectors in a refrigerant ejector refrigeration machine , 1997 .

[16]  M. Sokolov,et al.  Optimal coupling and feasibility of a solar-powered year-round ejector air conditioner , 1993 .

[17]  K. A. Antonopoulos,et al.  Energetic, exergetic and financial evaluation of a solar driven absorption chiller – A dynamic approach , 2017 .

[18]  Da-Wen Sun,et al.  Solar powered combined ejector-vapour compression cycle for air conditioning and refrigeration , 1997 .

[19]  N. Khattab,et al.  Modeling the design and performance characteristics of solar steam-jet cooling for comfort air conditioning , 2002 .

[20]  Bourhan Tashtoush,et al.  Hourly dynamic simulation of solar ejector cooling system using TRNSYS for Jordanian climate , 2015 .

[21]  Bin-Juine Huang,et al.  Collector selection for solar ejector cooling system , 2001 .

[22]  G. K. Alexis,et al.  A verification study of steam-ejector refrigeration model , 2003 .

[23]  N. G. Koumoutsos,et al.  Performance analysis of a solar vapour thermal compression chiller , 1989 .

[24]  H. G. Shen,et al.  Modeling solar-driven ejector refrigeration system offering air conditioning for office buildings , 2009 .

[25]  Anis H. Fakeeha,et al.  Energetic and exergetic analysis of solar-powered lithium bromide-water absorption cooling system , 2017 .

[26]  Uday Kumar,et al.  A novel solar thermal polygeneration system for sustainable production of cooling, clean water and domestic hot water in United Arab Emirates: Dynamic simulation and economic evaluation , 2016 .

[27]  Sergio Colle,et al.  Modelling and hourly simulation of a solar ejector cooling system , 2006 .

[28]  G. K. Alexis,et al.  Exergy analysis of ejector‐refrigeration cycle using water as working fluid , 2005 .

[29]  K. Cizungu,et al.  Performance comparison of vapour jet refrigeration system with environment friendly working fluids , 2001 .

[30]  E. Nehdi,et al.  Performance analysis of the vapour compression cycle using ejector as an expander , 2007 .

[31]  R. Petela Exergy of undiluted thermal radiation , 2003 .

[32]  M. Sokolov,et al.  Revisiting solar-powered ejector air conditioner––the greener the better , 2004 .

[33]  Yu Qiu,et al.  A comprehensive model for analysis of real-time optical performance of a solar power tower with a multi-tube cavity receiver , 2017 .

[34]  A. H. H. Ali Solar cooling: Experiences and lessons learned with two different systems , 2013, 2013 International Renewable and Sustainable Energy Conference (IRSEC).

[35]  Kamaruzzaman Sopian,et al.  Review on solar-driven ejector refrigeration technologies , 2009 .

[36]  Sergio Colle,et al.  Simulation and economic optimization of a solar assisted combined ejector–vapor compression cycle for cooling applications , 2010 .

[37]  K. A. Antonopoulos,et al.  Energetic and financial investigation of a stand-alone solar-thermal Organic Rankine Cycle power plant , 2016 .

[38]  Michael Dennis,et al.  Use of variable geometry ejector with cold store to achieve high solar fraction for solar cooling , 2011 .

[39]  Bogdan Diaconu Energy analysis of a solar-assisted ejector cycle air conditioning system with low temperature thermal energy storage , 2012 .

[40]  H. Kursad Ersoy,et al.  Performance characteristics of ejector expander transcritical CO2 refrigeration cycle , 2012 .

[41]  F. Boyaghchi,et al.  Multi-criteria optimization of a micro solar-geothermal CCHP system applying water/CuO nanofluid based on exergy, exergoeconomic and exergoenvironmental concepts , 2017 .

[42]  Elias K. Stefanakos,et al.  A review of solar thermo-mechanical refrigeration and cooling methods , 2015 .

[43]  K. A. Antonopoulos,et al.  Exergetic and energetic comparison of LiCl-H2O and LiBr-H2O working pairs in a solar absorption cooling system , 2016 .

[44]  Jahar Sarkar,et al.  Performance characteristics of natural-refrigerants- based ejector expansion refrigeration cycles , 2009 .

[45]  K. A. Antonopoulos,et al.  Energetic and financial evaluation of solar assisted heat pump space heating systems , 2016 .

[46]  Eckhard A. Groll,et al.  Study of ejector efficiencies in refrigeration cycles , 2013 .

[47]  Khaled M. Bataineh,et al.  Review and recent improvements of solar sorption cooling systems , 2016 .

[48]  Giovanni Ferrara,et al.  Analysis of a solar assisted vapour compression cooling system , 2013 .

[49]  Per Lundqvist,et al.  A year-round dynamic simulation of a solar-driven ejector refrigeration system with iso-butane as a refrigerant , 2007 .

[50]  Bogdan Diaconu,et al.  Analysis of a solar-assisted ejector cooling system for air conditioning , 2009 .

[51]  Vassilis Belessiotis,et al.  Experimental and numerical investigation of a linear Fresnel solar collector with flat plate receiver , 2016 .

[52]  Xianbiao Bu,et al.  Performance characteristics of R1234yf ejector-expansion refrigeration cycle , 2014 .

[53]  Stephen White,et al.  A systematic parametric study and feasibility assessment of solar-assisted single-effect, double-effect, and triple-effect absorption chillers for heating and cooling applications , 2016 .

[54]  Dariusz Butrymowicz,et al.  Experimental investigations of solar driven ejector air-conditioning system , 2014 .

[55]  Angelika Heinzel,et al.  Model of a solar driven steam jet ejector chiller and investigation of its dynamic operational behaviour , 2009 .

[56]  Bin-Juine Huang,et al.  A solar ejector cooling system using refrigerant R141b , 1998 .

[57]  Saffa Riffat,et al.  A Solar-Driven Ejector Refrigeration System for Mediterranean Climate: Experience Improvement and New Results Performed , 2012 .

[58]  Marc A. Rosen,et al.  Sustainable development of energy, water and environment systems for future energy technologies and concepts , 2016 .

[59]  Reyhaneh Loni,et al.  Thermodynamic analysis of an organic rankine cycle using a tubular solar cavity receiver , 2016 .

[60]  Saffa Riffat,et al.  Recent developments in ejector refrigeration technologies , 2013 .

[61]  G. K. Alexis,et al.  A solar ejector cooling system using refrigerant R134a in the Athens area , 2005 .