Yttrium hydride nanoantennas for active plasmonics

A key challenge for the development of active plasmonic nanodevices is the lack of materials with fully controllable plasmonic properties. In this work, we demonstrate that a plasmonic resonance in top-down nanofabricated yttrium antennas can be completely and reversibly turned on and off using hydrogen exposure. We fabricate arrays of yttrium nanorods and optically observe in extinction spectra the hydrogen-induced phase transition between the metallic yttrium dihydride and the insulating trihydride. Whereas the yttrium dihydride nanostructures exhibit a pronounced particle plasmon resonance, the transition to yttrium trihydride leads to a complete vanishing of the resonant behavior. The plasmonic resonance in the dihydride state can be tuned over a wide wavelength range by simply varying the size of the nanostructures. Furthermore, we develop an analytical diffusion model to explain the temporal behaviour of the hydrogen loading and unloading process observed in our experiments and gain information about the thermodynamics of our device. Thus, our nanorod system serves as a versatile basic building block for active plasmonic devices ranging from switchable perfect absorbers to active local heating control elements.

[1]  Javier Aizpurua,et al.  Mapping the plasmon resonances of metallic nanoantennas. , 2008, Nano letters.

[2]  B. Dam Optical properties of metal-hydrides: switchable mirrors , 2004 .

[3]  R. Griessen,et al.  Influence of the chemical potential on the hydrogen sorption kinetics of Mg2Ni/TM/Pd (TM = transition metal) trilayers , 2007 .

[4]  N. Zheludev,et al.  Metamaterial electro-optic switch of nanoscale thickness , 2010 .

[5]  Andreas Züttel,et al.  Hydrogen as a future energy carrier , 2008 .

[6]  Andrey E. Miroshnichenko,et al.  Magnetic light , 2012, Scientific reports.

[7]  Teri W. Odom,et al.  Liquid plasmonics: manipulating surface plasmon polaritons via phase transitions. , 2012, Nano letters.

[8]  R. Griessen,et al.  Self-organized layered hydrogenation in black Mg2NiHx switchable mirrors. , 2004, Physical review letters.

[9]  Alexandra Boltasseva,et al.  Electrically tunable damping of plasmonic resonances with graphene. , 2012, Nano letters.

[10]  Hydrogen induced changes in the optical properties of Pd capped V thin films , 2013 .

[11]  R. Griessen,et al.  Hysteresis and the single-phase metal-insulator transition in switchable YHx films , 2000 .

[12]  Atilla Aydinli,et al.  Tunable surface plasmon resonance on an elastomeric substrate. , 2009, Optics express.

[13]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[14]  H. Atwater,et al.  Frequency tunable near-infrared metamaterials based on VO2 phase transition. , 2009, Optics express.

[15]  Eric Plum,et al.  An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. , 2013, Nature nanotechnology.

[16]  Harald Giessen,et al.  Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. , 2011, Nano letters.

[17]  J. H. Rector,et al.  Yttrium and lanthanum hydride films with switchable optical properties , 1996, Nature.

[18]  R. Griessen,et al.  Light-induced metal-insulator transition in a switchable mirror. , 2001, Physical review letters.

[19]  Fritz Keilmann,et al.  Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide , 2008 .

[20]  R. Griessen,et al.  Structural, electrical and optical properties of La1-zYzHx switchable mirrors. , 2001 .

[21]  H. Katsuta,et al.  Diffusivity permeability and solubility of hydrogen in platinum , 1979 .

[22]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[23]  S. Maier,et al.  Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide. , 2010, Optics letters.

[24]  S. Maier,et al.  Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. , 2013, Optics express.

[25]  Kannatassen Appavoo,et al.  Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy. , 2012, Nano letters.

[26]  B. Mehta,et al.  Switchable metal hydride films , 2006 .

[27]  U. Eigenthaler,et al.  Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. , 2010, Nano letters.

[28]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[29]  B. Metzger,et al.  Plasmonic diastereomers: adding up chiral centers. , 2013, Nano letters.

[30]  Otto L. Muskens,et al.  Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime , 2013, 1302.6604.

[31]  R. Griessen,et al.  Logarithmic divergence of the electrical resistivity in the metal hydride YH3-d. , 1997 .

[32]  R. Griessen,et al.  Heat of formation models , 1988 .

[33]  Zhenlin Wang,et al.  A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate , 2010 .

[34]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[35]  Harold S. Park,et al.  The influence of mechanical strain on the optical properties of spherical gold nanoparticles , 2010 .

[36]  Andrey E. Miroshnichenko,et al.  Directional visible light scattering by silicon nanoparticles , 2012, Nature Communications.

[37]  K.H.J. Buschow,et al.  Hydrides formed from intermetallic compounds of two transition metals: a special class of ternary alloys , 1982 .

[38]  A. Stepanov,et al.  The formation of hydrogenated yttrium nanoparticles , 2002 .

[39]  Koray Aydin,et al.  Highly strained compliant optical metamaterials with large frequency tunability. , 2010, Nano letters.

[40]  N. Zheludev,et al.  All-optical phase-change memory in a single gallium nanoparticle. , 2007, Physical review letters.

[41]  R. Griessen,et al.  In Situ Resistivity Measurements and Optical Transmission and Reflection Spectroscopy of Electrochemically Loaded Switchable YHx Films , 1999 .

[42]  A. Stepanov,et al.  Synthesis of yttrium clusters , 2001 .

[43]  Behrad Gholipour,et al.  An All‐Optical, Non‐volatile, Bidirectional, Phase‐Change Meta‐Switch , 2013, Advanced materials.

[44]  R. Marani,et al.  Resonance Wavelength Dependence and Mode Formation in Gold Nanorod Optical Antennas with Finite Thickness , 2011 .

[45]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[46]  N. Zheludev,et al.  Phase-change chalcogenide glass metamaterial , 2009, 0912.4288.

[47]  U. Kreibig,et al.  Optical and electrical properties of hydrogenated yttrium nanoparticles , 2001 .

[48]  P. Vajda Chapter 137 Hydrogen in rare-earth metals, including RH2+x phases , 1995 .

[49]  Robert Kostecki,et al.  Switchable mirrors based on nickel–magnesium films , 2001 .

[50]  Thomas Taubner,et al.  Using low-loss phase-change materials for mid-infrared antenna resonance tuning. , 2013, Nano letters.

[51]  H. Xin,et al.  Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. , 2012, Nature materials.

[52]  P. A. Duine,et al.  Visualization of hydrogen migration in solids using switchable mirrors , 1998, Nature.

[53]  V. Pecharsky,et al.  Handbook on the physics and chemistry of rare earths , 1979 .

[54]  W. Shin,et al.  Optical properties of the γ-phase yttrium trihydride YH3−δ , 1999 .