State operators on GMV algebras

Flaminio and Montagna recently introduced state $$MV$$ algebras as $$MV$$ algebras with an internal state in the form of a unary operation. Di Nola and Dvurečenskij further presented a stronger variation of state $$MV$$ algebras called state-morphism $$MV$$ algebras. In the paper we present state $$GMV$$ algebras and state-morphism $$GMV$$ algebras which are non-commutative generalizations of the mentioned algebras.

[1]  Anatolij Dvurecenskij,et al.  State-morphism MV-algebras , 2009, Ann. Pure Appl. Log..

[2]  Jiří Rachůnek,et al.  A non-commutative generalization of MV-algebras , 2002 .

[3]  George A. Elliott Review: K. R. Goodearl, Partially ordered abelian groups with interpolation , 1989 .

[4]  Anatolij Dvurecenskij,et al.  States on Pseudo MV-Algebras , 2001, Stud Logica.

[5]  A. Dvurecenskij Pseudo MV-algebras are intervals in ℓ-groups , 2002, Journal of the Australian Mathematical Society.

[6]  D. Mundici Interpretation of AF -algebras in ukasiewicz sentential calculus , 1986 .

[7]  J. Rachunek,et al.  Prime spectra of non-commutative generalizations of MV-algebras , 2002 .

[8]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[9]  Anatolij Dvurecenskij,et al.  Erratum to "State-morphism MV-algebras" [Ann. Pure Appl. Logic 161 (2009) 161-173] , 2010, Ann. Pure Appl. Log..

[10]  Ioana Leustean,et al.  Non-commutative Łukasiewicz propositional logic , 2006, Arch. Math. Log..

[11]  Franco Montagna,et al.  MV-algebras with internal states and probabilistic fuzzy logics , 2009, Int. J. Approx. Reason..

[12]  DANIELE MUNDICI,et al.  Averaging the truth-value in Łukasiewicz logic , 1995, Stud Logica.

[13]  K. Goodearl Partially ordered abelian groups with interpolation , 1986 .

[14]  Ioana Leustean,et al.  MV-algebras with operators (the commutative and the non-commutative case) , 2004, Discret. Math..

[15]  Franco Montagna,et al.  An Algebraic Approach to States on MV-algebras , 2007, EUSFLAT Conf..