Distance-regular graphs which support a spin model are thin

Abstract We show that any distance-regular graph whose Bose-Mesner algebra contains a spin model of a certain type is thin in the sense of Terwilliger.

[1]  Benjamin V. C. Collins The girth of a thin distance-regular graph , 1997, Graphs Comb..

[2]  A. Neumaier,et al.  Distance Regular Graphs , 1989 .

[3]  Brian Curtin,et al.  2-Homogeneous bipartite distance-regular graphs , 1998, Discret. Math..

[4]  Sylvia A. Hobart,et al.  The Structure of Nonthin Irreducible T-modules of Endpoint 1: Ladder Bases and Classical Parameters , 1998 .

[5]  Paul M. Terwilliger A new inequality for distance-regular graphs , 1995, Discret. Math..

[6]  Kazumasa Nomura,et al.  An Algebra Associated with a Spin Model , 1997 .

[7]  Akihiro Munemasa,et al.  THE TERWILLIGER ALGEBRAS OF GROUP ASSOCIATION SCHEMES , 1995 .

[8]  Manabu Oura,et al.  THE TERWILLIGER ALGEBRAS OF THE GROUP ASSOCIATION SCHEMES OF S5 AND A5 , 1994 .

[9]  Kazumasa Nomura,et al.  Bose-Mesner Algebras Related to Type II Matrices and Spin Models , 1998 .

[10]  Vaughan F. R. Jones,et al.  On knot invariants related to some statistical mechanical models , 1989 .

[11]  Eiichi Bannai,et al.  On Spin Models, Modular Invariance, and Duality , 1997 .

[12]  Benjamin V. C. Collins,et al.  The Terwilliger algebra of an almost-bipartite distance-regular graph and its antipodal 2-cover , 2000, Discret. Math..

[13]  François Jaeger,et al.  Strongly regular graphs and spin models for the Kauffman polynomial , 1992 .

[14]  Garth A. Dickie Twice Q-polynomial distance-regular graphs are thin , 1995, Eur. J. Comb..

[15]  Kazumasa Nomura,et al.  Some Formulas for Spin Models on Distance-Regular Graphs , 1999, J. Comb. Theory, Ser. B.

[16]  Kenichiro Tanabe,et al.  The Irreducible Modules of the Terwilliger Algebras of Doob Schemes , 1997 .

[17]  Norio Yamazaki,et al.  The Subconstituent Algebra of a Strongly Regular Graph , 1994 .

[18]  Eiichi Bannai,et al.  Character Tables of Fission Schemes and Fusion Schemes , 1993, Eur. J. Comb..

[19]  Paul M. Terwilliger The Subconstituent Algebra of an Association Scheme, (Part I) , 1992 .

[20]  F. Jaeger Towards a Classification of Spin Models in terms of Association Schemes , 1996 .