Dissipation-assisted operator evolution method for capturing hydrodynamic transport

We introduce the dissipation-assisted operator evolution (DAOE) method for calculating transport properties of strongly interacting lattice systems in the high temperature regime. DAOE is based on evolving observables in the Heisenberg picture, and applying an artificial dissipation that reduces the weight on non-local operators. We represent the observable as a matrix product operator, and show that the dissipation leads to a decay of operator entanglement, allowing us to capture the dynamics to long times. We test this scheme by calculating spin and energy diffusion constants in a variety of physical models. By gradually weakening the dissipation, we are able to consistently extrapolate our results to the case of zero dissipation, thus estimating the physical diffusion constant with high precision.

[1]  J. E. Moore,et al.  Scaling of electrical and thermal conductivities in an almost integrable chain , 2012, 1212.0012.

[2]  H. Beijeren Transport properties of stochastic Lorentz models , 1982 .

[3]  Wataru Mizukami,et al.  Density matrix renormalization group for ab initio calculations and associated dynamic correlation methods: A review of theory and applications , 2015 .

[4]  Dimitri Van Neck,et al.  The density matrix renormalization group for ab initio quantum chemistry , 2014, The European Physical Journal D.

[5]  J. Ignacio Cirac,et al.  Approximating Gibbs states of local Hamiltonians efficiently with projected entangled pair states , 2014, 1406.2973.

[6]  R. Haydock The recursion method , 1987 .

[7]  H. Grabert,et al.  Projection Operator Techniques in Nonequilibrium Statistical Mechanics , 1982 .

[8]  E. Demler,et al.  Anomalous diffusion and griffiths effects near the many-body localization transition. , 2014, Physical review letters.

[9]  Entanglement, avoided crossings, and quantum chaos in an Ising model with a tilted magnetic field , 2006, quant-ph/0611248.

[10]  E. Altman,et al.  A Universal Operator Growth Hypothesis , 2018, Physical Review X.

[11]  S. Sondhi,et al.  Operator Hydrodynamics, OTOCs, and Entanglement Growth in Systems without Conservation Laws , 2017, 1705.08910.

[12]  Yevgeny Bar Lev,et al.  Time-dependent variational principle in matrix-product state manifolds: Pitfalls and potential , 2017, 1710.09378.

[13]  P. D. Gennes INELASTIC MAGNETIC SCATTERING OF NEUTRONS AT HIGH TEMPERATURES , 1958 .

[14]  T. Prosen,et al.  Matrix product simulations of non-equilibrium steady states of quantum spin chains , 2008, 0811.4188.

[15]  Gil Refael,et al.  Quantum dynamics of thermalizing systems , 2017, 1707.01506.

[16]  M. Knap,et al.  Nonlocal emergent hydrodynamics in a long-range quantum spin system , 2019, 1909.01351.

[17]  Tomaz Prosen,et al.  Operator space entanglement entropy in a transverse Ising chain , 2007, 0706.2480.

[18]  N. Bloembergen,et al.  On the interaction of nuclear spins in a crystalline lattice , 1949 .

[19]  Robert Zwanzig,et al.  Memory Effects in Irreversible Thermodynamics , 1961 .

[20]  M. Znidaric Nonequilibrium steady-state Kubo formula: Equality of transport coefficients , 2018, Physical Review B.

[21]  David J. Luitz,et al.  Operator entanglement entropy of the time evolution operator in chaotic systems , 2016, 1612.07327.

[22]  Hyungwon Kim,et al.  Ballistic spreading of entanglement in a diffusive nonintegrable system. , 2013, Physical review letters.

[23]  S. Blundell,et al.  Spin diffusion in the low-dimensional molecular quantum Heisenberg antiferromagnet Cu ( pyz ) ( NO 3 ) 2 detected with implanted muons , 2014, 1406.3202.

[24]  H. Araki Gibbs states of a one dimensional quantum lattice , 1969 .

[25]  F. Heidrich-Meisner,et al.  Spin and thermal conductivity of quantum spin chains and ladders , 2014, 1412.6047.

[26]  From reversible quantum microdynamics to irreversible quantum transport , 1995, nucl-th/9505009.

[27]  M. Dupont,et al.  Universal spin dynamics in infinite-temperature one-dimensional quantum magnets , 2019, Physical Review B.

[28]  J. Eisert,et al.  Towards overcoming the entanglement barrier when simulating long-time evolution , 2019, 1904.11999.

[29]  Ilya Kuprov,et al.  Polynomially scaling spin dynamics simulation algorithm based on adaptive state-space restriction. , 2007, Journal of magnetic resonance.

[30]  D. Reichman,et al.  Absence of diffusion in an interacting system of spinless fermions on a one-dimensional disordered lattice. , 2014, Physical review letters.

[31]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[32]  M. Znidaric,et al.  Diffusive and Subdiffusive Spin Transport in the Ergodic Phase of a Many-Body Localizable System. , 2016, Physical review letters.

[33]  Paolo Glorioso,et al.  Lectures on non-equilibrium effective field theories and fluctuating hydrodynamics , 2018, Proceedings of Theoretical Advanced Study Institute Summer School 2017 "Physics at the Fundamental Frontier" — PoS(TASI2017).

[34]  B. Doyon Lecture notes on Generalised Hydrodynamics , 2019, 1912.08496.

[35]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[36]  P. Z. I. F. S. I. Foundation,et al.  Entanglement of Quantum Evolutions , 2000, quant-ph/0010074.

[37]  Tjark Heitmann,et al.  Selected applications of typicality to real-time dynamics of quantum many-body systems , 2020 .

[38]  Jeongwan Haah,et al.  Operator Spreading in Random Unitary Circuits , 2017, 1705.08975.

[39]  Dieter Forster,et al.  Hydrodynamic fluctuations, broken symmetry, and correlation functions , 1975 .

[40]  Ivan Oseledets,et al.  Unifying time evolution and optimization with matrix product states , 2014, 1408.5056.

[41]  Ilya Kuprov,et al.  On the accuracy of the state space restriction approximation for spin dynamics simulations. , 2011, The Journal of chemical physics.

[42]  Pierre Resibois,et al.  Time dependent correlation functions and mode-mode coupling theories , 1975 .

[43]  Richard L. Martin,et al.  Ab initio quantum chemistry using the density matrix renormalization group , 1998 .

[44]  F. Verstraete,et al.  Matrix product operator representations , 2008, 0804.3976.

[45]  H. Yoo,et al.  Uniqueness and clustering properties of Gibbs states for classical and quantum unbounded spin systems , 1995 .

[46]  J. Gemmer,et al.  Real-time broadening of nonequilibrium density profiles and the role of the specific initial-state realization , 2016, 1610.05778.

[47]  Tomaz Prosen,et al.  Is the efficiency of classical simulations of quantum dynamics related to integrability? , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  F. Verstraete,et al.  Time-dependent variational principle for quantum lattices. , 2011, Physical review letters.

[49]  J. Gemmer,et al.  Density dynamics from current auto-correlations at finite time- and length-scales , 2009, 0906.2113.

[50]  Tomaz Prosen,et al.  Operator space entanglement entropy in XY spin chains , 2009, 0903.2432.

[51]  A. Polkovnikov,et al.  Cluster truncated Wigner approximation in strongly interacting systems , 2018, Annals of Physics.

[52]  F. Brandão,et al.  Clustering of Conditional Mutual Information for Quantum Gibbs States above a Threshold Temperature. , 2019, Physical review letters.

[53]  Matthew B Hastings,et al.  Area laws in quantum systems: mutual information and correlations. , 2007, Physical review letters.

[54]  David A. Huse,et al.  Theory of the many-body localization transition in one dimensional systems , 2014, 1412.3117.

[55]  F. Pollmann,et al.  Diffusive Hydrodynamics of Out-of-Time-Ordered Correlators with Charge Conservation , 2017, Physical Review X.

[56]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[57]  J. Gemmer,et al.  Spin-current autocorrelations from single pure-state propagation. , 2013, Physical review letters.

[58]  J. Gemmer,et al.  Spin and energy currents in integrable and nonintegrable spin-1/2 chains: A typicality approach to real-time autocorrelations , 2014, 1408.6837.

[59]  P. Jung,et al.  Lower bounds for the conductivities of correlated quantum systems , 2007, 0704.0886.

[60]  J. Eisert,et al.  Locality of temperature , 2013, 1309.0816.

[61]  D. Huse,et al.  Coarse-grained dynamics of operator and state entanglement , 2018, 1803.00089.

[62]  C. Karrasch,et al.  Universality Classes of Spin Transport in One-Dimensional Isotropic Magnets: The Onset of Logarithmic Anomalies. , 2020, Physical review letters.

[63]  D. Jaksch,et al.  Coexistence of energy diffusion and local thermalization in nonequilibrium XXZ spin chains with integrability breaking. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  M. Znidaric,et al.  Finite-temperature transport in one-dimensional quantum lattice models , 2020, Reviews of Modern Physics.

[65]  P. Jung,et al.  Transport in almost integrable models: perturbed Heisenberg chains. , 2005, Physical review letters.

[66]  Yevgeny Bar Lev,et al.  The ergodic side of the many‐body localization transition , 2016, 1610.08993.

[67]  Jayendra N Bandyopadhyay,et al.  Entangling power of quantum chaotic evolutions via operator entanglement , 2005, quant-ph/0504052.

[68]  Romain Vasseur,et al.  Universal properties of many-body delocalization transitions , 2015 .

[69]  A. Rosch,et al.  Hydrodynamic long-time tails after a quantum quench , 2013, 1311.7644.

[70]  S. Hartnoll,et al.  Theory of Diffusive Fluctuations. , 2018, Physical review letters.

[71]  T. Prosen,et al.  Spin diffusion from an inhomogeneous quench in an integrable system , 2017, Nature Communications.

[72]  Leo P. Kadanoff,et al.  Hydrodynamic equations and correlation functions , 1963 .

[73]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[74]  F. Verstraete,et al.  Tensor product methods and entanglement optimization for ab initio quantum chemistry , 2014, 1412.5829.

[75]  T. Banks,et al.  Emergent entropy production and hydrodynamics in quantum many-body systems. , 2018, Physical review. E.

[76]  David A. Huse,et al.  Quantum thermalization dynamics with Matrix-Product States , 2017, 1702.08894.

[77]  Markus Reiher,et al.  The Density Matrix Renormalization Group Algorithm in Quantum Chemistry , 2010 .

[78]  D. Huse,et al.  Operator Spreading and the Emergence of Dissipative Hydrodynamics under Unitary Evolution with Conservation Laws , 2017, Physical Review X.

[79]  Hui Zhao,et al.  Energy spread and current-current correlation in quantum systems , 2014, 1407.7197.

[80]  Thomas Kohler,et al.  Time-evolution methods for matrix-product states , 2019, Annals of Physics.

[81]  J. Dubail Entanglement scaling of operators: a conformal field theory approach, with a glimpse of simulability of long-time dynamics in 1  +  1d , 2016, 1612.08630.