A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus

We prove a Nekhoroshev type theorem for the nonlinear Schrodinger equation iut = −�u + V ? u + @¯ ug(画 ¯ u) ; x2 T d ; where V is a typical smooth potential and g is analytic in both variables. More precisely we prove that if the initial datum is analytic in a strip of width � > 0 with a bound on this strip equals to " then, if " is small enough, the solution of the nonlinear Schrodinger equation above remains analytic in a strip of width ᨽ 2 and bounded on this strip by C" during very long time of order " −�jln"j � for some constants C > 0, � > 0 and � < 1.

[1]  D. Chiron,et al.  Travelling Waves for the Nonlinear Schrödinger Equation with General Nonlinearity in Dimension Two , 2015, Journal of Nonlinear Science.

[2]  Yan Guo,et al.  Local well-posedness of the viscous surface wave problem without surface tension , 2013 .

[3]  Yan Guo,et al.  Almost Exponential Decay of Periodic Viscous Surface Waves without Surface Tension , 2013 .

[4]  C. Fefferman,et al.  Finite time singularities for the free boundary incompressible Euler equations , 2011, 1112.2170.

[5]  D. Jakobson,et al.  Uniform estimates for the solutions of the Schr , 2011, 1110.6521.

[6]  Masaya Maeda Stability of bound states of Hamiltonian PDEs in the degenerate cases , 2011, 1107.3629.

[7]  Sijue Wu,et al.  Global wellposedness of the 3-D full water wave problem , 2011 .

[8]  N. Burq Large-time dynamics for the one-dimensional Schrödinger equation , 2011, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[9]  R. Cooke Real and Complex Analysis , 2011 .

[10]  Charles Fefferman,et al.  Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves , 2011, 1102.1902.

[11]  F. Macià,et al.  The dynamics of the Schr\"odinger flow from the point of view of semiclassical measures , 2011, 1102.0970.

[12]  Hantaek Bae,et al.  Solvability of the free boundary value problem of the Navier-Stokes equations , 2010 .

[13]  Masahito Ohta,et al.  Instability of bound states for abstract nonlinear Schr , 2010, 1010.1511.

[14]  Vladimir Georgiev,et al.  Nonlinear instability of linearly unstable standing waves for nonlinear Schr , 2010, 1009.5184.

[15]  Sergei Kuksin,et al.  KAM for the nonlinear Schrödinger equation , 2010 .

[16]  T. Tao,et al.  Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation , 2010 .

[17]  S. Benzoni-Gavage Spectral transverse instability of solitary waves in Korteweg fluids , 2010 .

[18]  Erwan Faou,et al.  Hamiltonian Interpolation of Splitting Approximations for Nonlinear PDEs , 2009, Found. Comput. Math..

[19]  S. Kawashima,et al.  Decaying solution of the Navier–Stokes flow of infinite volume without surface tension , 2009 .

[20]  Erwan Faou,et al.  Birkhoff normal form for splitting methods applied to semilinear Hamiltonian PDEs. Part II. Abstract splitting , 2009, Numerische Mathematik.

[21]  Erwan Faou,et al.  Birkhoff normal form for splitting methods applied to semilinear Hamiltonian PDEs. Part I. Finite-dimensional discretization , 2009, Numerische Mathematik.

[22]  P. Germain,et al.  Global solutions for the gravity water waves equation in dimension 3 , 2009, 0906.5343.

[23]  Sijue Wu,et al.  Almost global wellposedness of the 2-D full water wave problem , 2009, 0910.2473.

[24]  J. Saut,et al.  Existence and properties of travelling waves for the Gross-Pitaevskii equation , 2009, 0902.3804.

[25]  Raphaël Danchin,et al.  On the linear wave regime of the Gross-Pitaevskii equation , 2008, 0809.3512.

[26]  T. Tao,et al.  Weakly turbulent solutions for the cubic defocusing nonlinear Schr\"odinger equation , 2008, 0808.1742.

[27]  Zhifei Zhang,et al.  Orbital stability of traveling waves for the one-dimensional Gross–Pitaevskii equation , 2008, 0807.4090.

[28]  Clément Gallo,et al.  The Cauchy Problem for Defocusing Nonlinear Schrödinger Equations with Non-Vanishing Initial Data at Infinity , 2008 .

[29]  N. Tzvetkov,et al.  Transverse nonlinear instability of solitary waves for some Hamiltonian PDE's , 2008, 0804.1308.

[30]  Jean-Claude Saut,et al.  Orbital stability of the black soliton to the Gross-Pitaevskii equation , 2008, 0804.0746.

[31]  P. Kevrekidis,et al.  Travelling solitary waves in the discrete Schrodinger equation with saturable nonlinearity: Existence, stability and dynamics , 2008 .

[32]  Kevin Zumbrun,et al.  A Sharp Stability Criterion for Soliton-Type Propagating Phase Boundaries in Korteweg's Model , 2008 .

[33]  Zhiwu Lin Instability of nonlinear dispersive solitary waves , 2008, 0802.0012.

[34]  S. B. Kuksin,et al.  KAM for the Non-Linear Schr\"odinger Equation , 2007, 0709.2393.

[35]  Clément Gallo,et al.  The black solitons of one-dimensional NLS equations , 2007 .

[36]  N. Tzvetkov,et al.  Transverse nonlinear instability for two-dimensional dispersive models , 2006, math/0612494.

[37]  Dario Bambusi,et al.  Birkhoff normal form for partial differential equations with tame modulus , 2006 .

[38]  Dmitry E. Pelinovsky,et al.  Dark solitons in external potentials , 2006, cond-mat/0610881.

[39]  D. Pelinovsky,et al.  Nonlinear Instability of a Critical Traveling Wave in the Generalized Korteweg-de Vries Equation , 2006, SIAM J. Math. Anal..

[40]  D. Frantzeskakis,et al.  Dark solitons in discrete lattices: saturable versus cubic nonlinearities. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  B. Grébert,et al.  Birkhoff Normal Form and Hamiltonian Pdes , 2007 .

[42]  Yan Guo,et al.  Almost Exponential Decay Near Maxwellian , 2006 .

[43]  Tetsu Mizumachi,et al.  A remark on linearly unstable standing wave solutions to NLS , 2006 .

[44]  S. Descombes,et al.  Structure of Korteweg models and stability of diffuse interfaces , 2005 .

[45]  Raphaël Danchin,et al.  Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz coefficients , 2005 .

[46]  David Lannes,et al.  Well-posedness of the water-waves equations , 2005 .

[47]  N. Burq,et al.  Smoothing and dispersive estimates for 1D Schrödinger equations with BV coefficients and applications , 2004, math/0409379.

[48]  C. Gallo Schrödinger group on Zhidkov spaces , 2004, Advances in Differential Equations.

[49]  Caroline Nore,et al.  Gross–Pitaevskii dynamics of Bose–Einstein condensates and superfluid turbulence , 2003 .

[50]  Dmitry E. Pelinovsky,et al.  Purely nonlinear instability of standing waves with minimal energy , 2003 .

[51]  B. Grébert,et al.  Forme normale pour NLS en dimension quelconque , 2003 .

[52]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[53]  Nicolas Burq,et al.  Bouncing Ball Modes and Quantum Chaos , 2003, SIAM Rev..

[54]  M. Zworski,et al.  Geometric control in the presence of a black box , 2004 .

[55]  Dario Bambusi,et al.  Birkhoff Normal Form for Some Nonlinear PDEs , 2003 .

[56]  Thomas J. Bridges,et al.  Linear Instability of Solitary Wave Solutions of the Kawahara Equation and Its Generalizations , 2002, SIAM J. Math. Anal..

[57]  Zhiwu Lin,et al.  Stability and instability of traveling solitonic bubbles , 2002, Advances in Differential Equations.

[58]  Orlando Lopes A linearized instability result for solitary waves , 2001 .

[59]  A. Kiselev,et al.  Maximal Functions Associated to Filtrations , 2001 .

[60]  Emmanuel Grenier,et al.  On the nonlinear instability of Euler and Prandtl equations , 2000 .

[61]  Newman,et al.  Low-dimensional bose liquids: beyond the gross-pitaevskii approximation , 2000, Physical review letters.

[62]  Dario Bambusi,et al.  On long time stability in Hamiltonian perturbations of non-resonant linear PDEs , 1999 .

[63]  N. Papanicolaou,et al.  Semitopological solitons in planar ferromagnets , 1999 .

[64]  Dario Bambusi,et al.  Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations , 1999 .

[65]  Kevin Zumbrun,et al.  The gap lemma and geometric criteria for instability of viscous shock profiles , 1998 .

[66]  Jean Bourgain,et al.  Construction of approximative and almost periodic solutions of perturbed linear schrödinger and wave equations , 1996 .

[67]  N. Tanaka,et al.  Large-time existence of surface waves in incompressible viscous fluids with or without surface tension , 1995 .

[68]  Y. Kivshar,et al.  Instabilities of dark solitons. , 1995, Optics letters.

[69]  Anne de Bouard,et al.  Instability of stationary bubbles , 1995 .

[70]  Yang,et al.  Perturbation-induced dynamics of dark solitons. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[71]  J. Pöschel,et al.  Nekhoroshev estimates for quasi-convex hamiltonian systems , 1993 .

[72]  Michael I. Weinstein,et al.  Eigenvalues, and instabilities of solitary waves , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[73]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[74]  P. Souganidis,et al.  Stability and instability of solitary waves of Korteweg-de Vries type , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[75]  L. Galgani,et al.  Rigorous estimates for the series expansions of Hamiltonian perturbation theory , 1985 .

[76]  G. Benettin,et al.  A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems , 1985 .

[77]  J. Shatah,et al.  Instability of nonlinear bound states , 1985 .

[78]  Daniel B. Henry,et al.  Stability theory for solitary-wave solutions of scalar field equations , 1982 .

[79]  N N Nekhoroshev,et al.  AN EXPONENTIAL ESTIMATE OF THE TIME OF STABILITY OF NEARLY-INTEGRABLE HAMILTONIAN SYSTEMS , 1977 .

[80]  F. Macià The Schrödinger Flow in a Compact Manifold: High-frequency Dynamics and Dispersion , 2011 .

[81]  T. Nishida,et al.  Global in time behavior of viscous surface waves: horizontally periodic motion , 2004 .

[82]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[83]  P. Souganidis,et al.  Instability of a class of dispersive solitary waves , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[84]  Takaaki Nishida,et al.  Large-Time Behavior of Viscous Surface Waves. , 1985 .

[85]  T. Tsuzuki,et al.  Nonlinear waves in the Pitaevskii-Gross equation , 1971 .

[86]  Tosio Kato Perturbation theory for linear operators , 1966 .