Single-photon source with sub-MHz linewidth for cesium-based quantum information processing

[1]  N. Spagnolo,et al.  Quantum walks of two correlated photons in a 2D synthetic lattice , 2022, npj Quantum Information.

[2]  Jian-Wei Pan,et al.  Quantum-dot single-photon sources for the quantum internet , 2021, Nature Nanotechnology.

[3]  Min Xiao,et al.  Towards On-Demand Heralded Single-Photon Sources via Photon Blockade , 2021, 2104.04178.

[4]  Gerhard Rempe,et al.  A quantum-logic gate between distant quantum-network modules , 2021, Science.

[5]  Olivier Morin,et al.  A network-ready random-access qubits memory , 2020, 2011.00811.

[6]  E. Polzik,et al.  Room-temperature single-photon source with near-millisecond built-in memory , 2020, Nature Communications.

[7]  Wei Zhong,et al.  Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon , 2020, Frontiers of Physics.

[8]  Guoquan Zhang,et al.  Sub-megahertz narrow-band photon pairs at 606 nm for solid-state quantum memories , 2020 .

[9]  Manuel Brekenfeld,et al.  A quantum network node with crossed optical fibre cavities , 2020, 2004.08832.

[10]  M. Mitchell,et al.  Narrowband photon pairs with independent frequency tuning for quantum light-matter interactions. , 2019, Optics express.

[11]  I. Gerhardt,et al.  Narrow-Band Fiber-Coupled Single-Photon Source , 2019, 1909.08353.

[12]  M. Goggin,et al.  Direct excitation of a single quantum dot with cavity-SPDC photons. , 2018, Optics express.

[13]  G. Guo,et al.  Universal Photonic Quantum Interface for a Quantum Network , 2018, Physical Review Applied.

[14]  P. Walther,et al.  Novel single-mode narrow-band photon source of high brightness tuned to cesium D2 line , 2018, APL Photonics.

[15]  Ying-Cheng Chen,et al.  Ultrabright, narrow-band photon-pair source for atomic quantum memories , 2018 .

[16]  H. Kosaka,et al.  Ultrabright narrow-band telecom two-photon source for long-distance quantum communication , 2018, 1803.07749.

[17]  Tsung-Yao Wu,et al.  Bright single photons for light-matter interaction , 2017, 1708.02325.

[18]  J. Shaffer,et al.  Intracavity Rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity , 2017, 1707.02911.

[19]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[20]  Shujing Li,et al.  Generation of Narrow-Band Polarization-Entangled Photon Pairs at a Rubidium D1 Line , 2016, 1607.04151.

[21]  Jun He,et al.  Suppression of single-cesium-atom heating in a microscopic optical dipole trap for demonstration of an 852-nm triggered single-photon source , 2016, 1606.06978.

[22]  Andrew G. White,et al.  Sub-megahertz linewidth single photon source , 2016, 1601.06173.

[23]  T. Aoki,et al.  Strong Coupling between a Trapped Single Atom and an All-Fiber Cavity. , 2015, Physical review letters.

[24]  Norbert Kalb,et al.  A quantum gate between a flying optical photon and a single trapped atom , 2014, Nature.

[25]  Matteo Cristiani,et al.  Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks. , 2013, Physical review letters.

[26]  Rainer Erdmann,et al.  Integrated multichannel photon timing instrument with very short dead time and high throughput. , 2013, The Review of scientific instruments.

[27]  S. Harris,et al.  A miniature ultrabright source of temporally long, narrowband biphotons , 2012 .

[28]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.

[29]  Jian-Wei Pan,et al.  Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion , 2011 .

[30]  Alessandro Cerè,et al.  Atom-resonant heralded single photons by interaction-free measurement. , 2011, Physical review letters.

[31]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[32]  M. Hennrich,et al.  Heralded single-photon absorption by a single atom , 2010, 1004.4158.

[33]  Matthias Scholz,et al.  Analytical treatment of spectral properties and signal-idler intensity correlations for a double-resonant optical parametric oscillator far below threshold , 2009 .

[34]  Matthias Scholz,et al.  Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion. , 2009, Physical review letters.

[35]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[36]  Mark Beck,et al.  Comparing measurements of g (2) (0) performed with different coincidence detection techniques , 2007 .

[37]  Masahide Sasaki,et al.  Photon subtracted squeezed states generated with periodically poled KTiOPO(4). , 2007, Optics express.

[38]  J. Csicsvari,et al.  References and Notes Supporting Online Material Materials and Methods Som Text Figs. S1 to S12 Tables S1 and S2 References Experimental Realization of Wheeler's Delayed-choice Gedanken Experiment , 2022 .

[39]  Herbert Walther,et al.  Continuous generation of single photons with controlled waveform in an ion-trap cavity system , 2004, Nature.

[40]  A. D. Boozer,et al.  Deterministic Generation of Single Photons from One Atom Trapped in a Cavity , 2004, Science.

[41]  P. Grangier,et al.  Single photon quantum cryptography. , 2002, Physical review letters.

[42]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[43]  A. Lvovsky,et al.  Quantum state reconstruction of the single-photon Fock state. , 2001, Physical review letters.

[44]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[45]  Z. Y. Ou,et al.  Optical parametric oscillator far below threshold: Experiment versus theory , 2000 .

[46]  Tan Min Pau,et al.  Genetic structure of the snakehead murrel, Channa striata (channidae) based on the cytochrome c oxidase subunit I gene: Influence of historical and geomorphological factors , 2011, Genetics and molecular biology.

[47]  Shih,et al.  Optical imaging by means of two-photon quantum entanglement. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[48]  T. Hänsch,et al.  Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity , 1980 .

[49]  R. H. Brown,et al.  Correlation between Photons in two Coherent Beams of Light , 1956, Nature.

[50]  B. Shi,et al.  Cavity-enhanced bright photon pairs at telecom wavelengths with a triple-resonance configuration , 2014 .