An adaptive multilevel approach to the minimal compliance problem in topology optimization
暂无分享,去创建一个
[1] K. Svanberg. The method of moving asymptotes—a new method for structural optimization , 1987 .
[2] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .
[3] Martin P. Bendsøe,et al. Optimization of Structural Topology, Shape, And Material , 1995 .
[4] G. Allaire,et al. Shape optimization by the homogenization method , 1997 .
[5] J. Petersson,et al. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima , 1998 .
[6] Volker Schulz,et al. Interior point multigrid methods for topology optimization , 2000 .
[7] B. Bourdin. Filters in topology optimization , 2001 .
[8] J. Petersson,et al. Topology optimization using regularized intermediate density control , 2001 .
[9] Niels Olhoff,et al. Topology optimization of continuum structures: A review* , 2001 .
[10] K. Svanberg,et al. An alternative interpolation scheme for minimum compliance topology optimization , 2001 .
[11] T. Borrvall. Topology optimization of elastic continua using restriction , 2001 .
[12] G. Rozvany. Topology optimization in structural mechanics , 2001 .
[13] R. Hoppe,et al. Primal-Dual Newton-Type Interior-Point Method for Topology Optimization , 2002 .
[14] Krister Svanberg,et al. A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations , 2002, SIAM J. Optim..
[15] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.