휴대형 근적외선/가시광선 분광기를 이용한 의약품 분류기법
暂无分享,去创建一个
의약품은 인간의 건강 및 생명과 밀접한 관련이 있기 때문에 증상에 맞는 의약품을 처방받아 복용하는 것은 매우 중요한 문제이다. 더욱이 세계적으로 위조 의약품이 증가하는 상황에서 정품 의약품들을 정확하게 분류하는 기술은 점점 중요해진다. 그러나 의약품을 제대로 분류할 수 있는 전문적인 지식을 갖춘 인력이 제한적이라는 측면에서 의약품을 자동적으로 분류하는 기술이 필요하다. 본 논문에서는 휴대용 분광기를 이용하여 의약품의 근적외선 및 가시광선 스펙트럼을 추출하고, Support Vector Machine(SVM) 기법을 이용하여 추출한 스펙트럼 데이터를 학습시켜 분류하는 방법을 제안하였다. 모의실험을 통해 근적외선과 가시광선 스펙트럼 데이터를 사용하여 6종의 의약품을 학습시키고 분류하였을 때 평균적으로 99.9 %의 정확도를 얻었다. 또한 본 논문에서는 위조 의약품 검출을 위한 2단계 SVM 분류 기법을 제안하였으며, 이를 통해 정품과 위조 의약품을 구분하는 정확도가 향상되고, 처리속도가 개선되는 것을 확인하였다.