Tunable Subwavelength Terahertz Plasmonic Stub Waveguide Filters

Tunable subwavelength terahertz (THz) plasmonic stub waveguide filters based on indium antimonide are proposed and numerically investigated for the first time. The transmission line theory and the finite different time domain simulation results reveal that the single-stub waveguide structure can realize a stop-band filtering function and the central wavelength of the notch is linearly dependent on the stub length while nonlinearly dependent on the stub width. The central wavelength of the notch can be actively controlled by tuning the temperature. As an extension to the single-stub structure, multiple-stub InSb slot waveguide structures are also proposed and used to realize a wide stop-band filtering function. The proposed filters may have applications in THz highly integrated plasmonic circuits.

[1]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[2]  Yu Wang Surface plasmon tunable filters and flat panel display device , 1999, Electronic Imaging.

[3]  Ying Zhang,et al.  An all-optical plasmonic limiter based on a nonlinear slow light waveguide , 2012, Nanotechnology.

[4]  Daniel M. Mittleman,et al.  Metal wires for terahertz wave guiding , 2004, Nature.

[5]  Xu Guang Huang,et al.  A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators. , 2010, Optics express.

[6]  V. Ryzhii,et al.  Terahertz surface plasmons in optically pumped graphene structures , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  J. P. Goudonnet,et al.  Optical modulation processes in thin films based on thermal effects of surface plasmons , 2005 .

[8]  A. Davies,et al.  Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme , 2012, IEEE Transactions on Terahertz Science and Technology.

[9]  Toshihiro Okamoto,et al.  Characteristics of gap plasmon waveguide with stub structures. , 2008, Optics express.

[10]  J. Rivas,et al.  Terahertz: The art of confinement , 2008 .

[11]  J. Rivas,et al.  Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces , 2006 .

[12]  J. Schmalian,et al.  Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene. , 2011, Physical review letters.

[13]  Daniel R. Grischkowsky,et al.  Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers , 2000 .

[14]  P. Mazumder,et al.  Dynamic Terahertz Spoof Surface Plasmon–Polariton Switch Based on Resonance and Absorption , 2011, IEEE Transactions on Electron Devices.

[15]  T. Kutsuwa,et al.  A single-photon detector in the far-infrared range , 2000, Nature.

[16]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[17]  I P Kaminow,et al.  Metal-clad optical waveguides: analytical and experimental study. , 1974, Applied optics.

[18]  Xu Guang Huang,et al.  A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. , 2009, Optics express.

[19]  Heinrich Kurz,et al.  Low-frequency active surface plasmon optics on semiconductors , 2006 .

[20]  Xiaoyong He Investigation of terahertz Sommerfeld wave propagation along conical metal wire , 2009 .

[21]  Ying Zhang,et al.  Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers , 2013 .

[22]  Federico Capasso,et al.  Beam engineering of quantum cascade lasers , 2012 .

[23]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[24]  Ikmo Park,et al.  Terahertz pulse propagation in plastic photonic crystal fibers , 2002, IMS 2002.

[25]  Qi Jie Wang,et al.  High-Temperature Operation of Terahertz Quantum Cascade Laser Sources , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  A. Davies,et al.  Terahertz semiconductor-heterostructure lasers , 2002, Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO '02. Technical Diges.

[27]  D. Grischkowsky,et al.  Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides. , 1999, Optics letters.

[28]  Qi Jie Wang,et al.  Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons. , 2012, Optics letters.

[29]  Ariel Gordon,et al.  Scaling of keV HHG photon yield with drive wavelength. , 2005, Optics express.

[30]  K. MacDonald,et al.  Active plasmonics: current status , 2010 .

[31]  J. Borburgh,et al.  Dispersion of surface plasmons in InSb-gratings , 1974 .

[32]  Anatoly V. Zayats,et al.  Nonlinear surface plasmon polaritonic crystals , 2008 .

[33]  Reuven Gordon,et al.  Increased cut-off wavelength for a subwavelength hole in a real metal. , 2005, Optics express.

[34]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[35]  H. Lezec,et al.  Electrooptic modulation in thin film barium titanate plasmonic interferometers. , 2008, Nano letters.

[36]  M. Oszwałldowski,et al.  Temperature dependence of intrinsic carrier concentration and density of states effective mass of heavy holes in InSb , 1988 .

[37]  A. Davies,et al.  GaAs/Al0.15Ga0.85As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K , 2010, 2011 International Conference on Infrared, Millimeter, and Terahertz Waves.

[38]  Qi Jie Wang,et al.  Designer spoof surface plasmon structures collimate terahertz laser beams. , 2010, Nature materials.