Filter Bank precoding for FIR equalization in high-rate MIMO communications

In this paper, the problem of designing finite-impulse-response (FIR) equalizers for multiple-input multiple-output (MIMO) FIR channels is considered. It is shown that an arbitrary MIMO frequency-selective channel can be rendered FIR equalizable by a suitable filter bank (FB) precoding operation that introduces redundancy at the transmitter. The expression for the minimum redundancy required to ensure FIR invertibility is derived. The analysis is extended to the case of MIMO multicarrier modulation. Optimum zero-forcing (ZF) and minimum mean-squared error (MMSE) solutions for the FIR equalizer are derived. Simulation results are provided to demonstrate that the proposed scheme achieves better performance than the block-processing methods while supporting a higher data rate.

[1]  Xiang-Gen Xia,et al.  New precoding for intersymbol interference cancellation using nonmaximally decimated multirate filterbanks with ideal FIR equalizers , 1997, IEEE Trans. Signal Process..

[2]  Sanjit K. Mitra,et al.  Polyphase networks, block digital filtering, LPTV systems, and alias-free QMF banks: a unified approach based on pseudocirculants , 1988, IEEE Trans. Acoust. Speech Signal Process..

[3]  Robert Bregovic,et al.  Multirate Systems and Filter Banks , 2002 .

[4]  Volker Jungnickel,et al.  Zero forcing equalizing filter for MIMO channels with intersymbol interference , 2002, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[5]  Anna Scaglione,et al.  Optimal designs for space-time linear precoders and decoders , 2002, IEEE Trans. Signal Process..

[6]  See-May Phoong,et al.  Minimum redundancy for ISI free FIR filterbank transceivers , 2002, IEEE Trans. Signal Process..

[7]  P. P. Vaidyanathan,et al.  MIMO biorthogonal partners and applications , 2002, IEEE Trans. Signal Process..

[8]  Are Hjørungnes,et al.  Jointly minimum BER transmitter and receiver FIR MIMO filters for binary signal vectors , 2004, IEEE Transactions on Signal Processing.

[9]  Emanuele Viterbo,et al.  Signal Space Diversity: A Power- and Bandwidth-Efficient Diversity Technique for the Rayleigh Fading Channel , 1998, IEEE Trans. Inf. Theory.

[10]  John M. Cioffi,et al.  Spatio-temporal coding for wireless communications , 1996, Proceedings of GLOBECOM'96. 1996 IEEE Global Telecommunications Conference.

[11]  Hui Liu,et al.  Filterbank precoders for blind equalization: polynomial ambiguity resistant precoders (PARP) , 2001 .

[12]  Helmut Bölcskei,et al.  An overview of MIMO communications - a key to gigabit wireless , 2004, Proceedings of the IEEE.

[13]  P. P. Vaidyanathan,et al.  Transmultiplexers as precoders in modern digital communication: a tutorial review , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[14]  John M. Cioffi,et al.  Spatio-temporal coding for wireless communication , 1998, IEEE Trans. Commun..

[15]  Yuan-Pei Lin,et al.  Smith form of FIR pseudocirculants , 2002, IEEE Signal Processing Letters.

[16]  Thomas Kailath,et al.  Linear Systems , 1980 .

[17]  Helmut Bölcskei,et al.  Impact of the propagation environment on the performance of space-frequency coded MIMO-OFDM , 2003, IEEE J. Sel. Areas Commun..

[18]  Jitendra Tugnait,et al.  FIR inverses to MIMO rational transfer functions with application to blind equalization , 1996, Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers.

[19]  Leonard M. Silverman,et al.  A new characterization of feedforward delay-free inverses (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[20]  A.J. Paulraj,et al.  Pre-equalization for MIMO wireless channels with delay spread , 2000, Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152).