ECME Thresholding Methods for Sparse Signal Reconstruction

We propose a probabilistic framework for interpreting and developing hard thresholding sparse signal reconstruction methods and present several new algorithms based on this framework. The measurements follow an underdetermined linear model, where the regression-coefficient vector is the sum of an unknown deterministic sparse signal component and a zero-mean white Gaussian component with an unknown variance. We first derive an expectation-conditional maximization either (ECME) iteration that guarantees convergence to a local maximum of the likelihood function of the unknown parameters for a given signal sparsity level. To analyze the reconstruction accuracy, we introduce the minimum sparse subspace quotient (SSQ), a more flexible measure of the sampling operator than the well-established restricted isometry property (RIP). We prove that, if the minimum SSQ is sufficiently large, ECME achieves perfect or near-optimal recovery of sparse or approximately sparse signals, respectively. We also propose a double overrelaxation (DORE) thresholding scheme for accelerating the ECME iteration. If the signal sparsity level is unknown, we introduce an unconstrained sparsity selection (USS) criterion for its selection and show that, under certain conditions, applying this criterion is equivalent to finding the sparsest solution of the underlying underdetermined linear system. Finally, we present our automatic double overrelaxation (ADORE) thresholding method that utilizes the USS criterion to select the signal sparsity level. We apply the proposed schemes to reconstruct sparse and approximately sparse signals from tomographic projections and compressive samples.

[1]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[2]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[3]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[4]  Joel A. Tropp,et al.  Sparse Approximation Via Iterative Thresholding , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[5]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[6]  Robert D. Nowak,et al.  Joint Source–Channel Communication for Distributed Estimation in Sensor Networks , 2007, IEEE Transactions on Information Theory.

[7]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[8]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[9]  Aleksandar Dogandzic,et al.  Double overrelaxation thresholding methods for sparse signal reconstruction , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[10]  Aleksandar Dogandzic,et al.  Variance-Component Based Sparse Signal Reconstruction and Model Selection , 2010, IEEE Transactions on Signal Processing.

[11]  Aleksandar Dogandžić,et al.  Automatic hard thresholding for sparse signal reconstruction from NDE measurements , 2010 .

[12]  D. Donoho,et al.  Freely Available, Optimally Tuned Iterative Thresholding Algorithms for Compressed Sensing , 2009 .

[13]  J. Tropp,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.

[14]  D. Harville Matrix Algebra From a Statistician's Perspective , 1998 .

[15]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[16]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[17]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[18]  Chuanhai Liu,et al.  The Dynamic ECME Algorithm , 2010, 1004.0524.

[19]  Bhaskar D. Rao,et al.  Sparse Bayesian learning for basis selection , 2004, IEEE Transactions on Signal Processing.

[20]  Mike E. Davies,et al.  Normalized Iterative Hard Thresholding: Guaranteed Stability and Performance , 2010, IEEE Journal of Selected Topics in Signal Processing.

[21]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[22]  D. Rubin,et al.  The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence , 1994 .

[23]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[24]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[25]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[26]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[27]  Lawrence Carin,et al.  Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.

[28]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[29]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[30]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[31]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[32]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[33]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[34]  Trac D. Tran,et al.  Fast compressive sampling with structurally random matrices , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[35]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  T. Blumensath,et al.  Iterative Thresholding for Sparse Approximations , 2008 .

[37]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[38]  Tony Scallan,et al.  Elements of Statistical Computing: Numerical Computation , 1988 .

[39]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..