The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization

[1]  M. Barr,et al.  Ciliogenesis in Caenorhabditis elegans requires genetic interactions between ciliary middle segment localized NPHP-2 (inversin) and transition zone-associated proteins , 2012, Journal of Cell Science.

[2]  Hooi Lynn Kee,et al.  A Size-Exclusion Permeability Barrier and Nucleoporins Characterize a Ciliary Pore Complex that Regulates Transport into Cilia , 2012, Nature Cell Biology.

[3]  T. Noda,et al.  Coordinated Ciliary Beating Requires Odf2-Mediated Polarization of Basal Bodies via Basal Feet , 2012, Cell.

[4]  M. Najafi,et al.  Steric volume exclusion sets soluble protein concentrations in photoreceptor sensory cilia , 2011, Proceedings of the National Academy of Sciences.

[5]  Ben Chih,et al.  A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain , 2011, Nature Cell Biology.

[6]  Colin A. Johnson,et al.  TMEM237 is mutated in individuals with a Joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone. , 2011, American journal of human genetics.

[7]  John F. Dishinger,et al.  Induction of Ran GTP drives ciliogenesis , 2011, Molecular biology of the cell.

[8]  Ignacio Izeddin,et al.  Assessing the localization of centrosomal proteins by PALM/STORM nanoscopy , 2011, Cytoskeleton.

[9]  J. Pereira-Leal,et al.  Tracing the origins of centrioles, cilia, and flagella , 2011, The Journal of Cell Biology.

[10]  S. Letteboer,et al.  The ciliopathy-associated protein homologs RPGRIP1 and RPGRIP1L are linked to cilium integrity through interaction with Nek4 serine/threonine kinase. , 2011, Human molecular genetics.

[11]  Dheeraj S. Roy,et al.  Septin GTPases spatially guide microtubule organization and plus end dynamics in polarizing epithelia , 2011, The Journal of cell biology.

[12]  J. Pereira-Leal,et al.  Tracing the origins of centrioles, cilia, and flagella , 2011, The Journal of cell biology.

[13]  Carsten Bergmann,et al.  Disruption of a ciliary B9 protein complex causes Meckel syndrome. , 2011, American journal of human genetics.

[14]  J. Malicki,et al.  Nephrocystins and MKS proteins interact with IFT particle and facilitate transport of selected ciliary cargos , 2011, The EMBO journal.

[15]  J. García-Verdugo,et al.  A Transition Zone Complex Regulates Mammalian Ciliogenesis and Ciliary Membrane Composition , 2011, Nature Genetics.

[16]  R. Roepman,et al.  Disruption of intraflagellar protein transport in photoreceptor cilia causes Leber congenital amaurosis in humans and mice , 2011, Cilia.

[17]  W. Nelson,et al.  Ciliary diffusion barrier: The gatekeeper for the primary cilium compartment , 2011, Cytoskeleton.

[18]  P. Dupuis‐Williams,et al.  Ultrastructure of cilia and flagella – back to the future! , 2011, Biology of the cell.

[19]  Matthew J. Brauer,et al.  Mapping the NPHP-JBTS-MKS Protein Network Reveals Ciliopathy Disease Genes and Pathways , 2011, Cell.

[20]  U. Wolfrum,et al.  Intraflagellar transport proteins in ciliogenesis of photoreceptor cells , 2011, Biology of the cell.

[21]  W. Marshall,et al.  Ciliogenesis: building the cell's antenna , 2011, Nature Reviews Molecular Cell Biology.

[22]  Nansheng Chen,et al.  MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis , 2011, The Journal of cell biology.

[23]  T. Hurd,et al.  Localization of retinitis pigmentosa 2 to cilia is regulated by Importin β2 , 2011, Journal of Cell Science.

[24]  J. Naggert,et al.  NPHP4 is necessary for normal photoreceptor ribbon synapse maintenance and outer segment formation, and for sperm development. , 2011, Human molecular genetics.

[25]  V. Sheffield,et al.  Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome , 2011, Proceedings of the National Academy of Sciences.

[26]  M. Nachury,et al.  Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? , 2010, Annual review of cell and developmental biology.

[27]  Colin A. Johnson,et al.  Planar Cell Polarity Acts Through Septins to Control Collective Cell Movement and Ciliogenesis , 2010, Science.

[28]  J. Rosenbaum,et al.  CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content , 2010, The Journal of cell biology.

[29]  M. Scott,et al.  A Septin Diffusion Barrier at the Base of the Primary Cilium Maintains Ciliary Membrane Protein Distribution , 2010, Science.

[30]  R. J. Ferland,et al.  Retinal Degeneration and Failure of Photoreceptor Outer Segment Formation in Mice with Targeted Deletion of the Joubert Syndrome Gene, Ahi1 , 2010, The Journal of Neuroscience.

[31]  Paul M. Jenkins,et al.  Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-β2 and Ran-GTP , 2010, Nature Cell Biology.

[32]  Colin A. Johnson,et al.  Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes , 2010, Nature Genetics.

[33]  K. Anderson,et al.  The primary cilium: a signalling centre during vertebrate development , 2010, Nature Reviews Genetics.

[34]  M. E. Hodges,et al.  Reconstructing the evolutionary history of the centriole from protein components , 2010, Journal of Cell Science.

[35]  U. Wolfrum,et al.  Intraflagellar transport molecules in ciliary and nonciliary cells of the retina , 2010, The Journal of cell biology.

[36]  U. Muglia,et al.  Fine structure of spermatozoa in the blackspot sea bream Pagellus bogaraveo (Brünnich, 1768) with some considerations about the centriolar complex. , 2010, Tissue & cell.

[37]  Wei Guo,et al.  Coordination of Rab8 and Rab11 in primary ciliogenesis , 2010, Proceedings of the National Academy of Sciences.

[38]  J. García-Verdugo,et al.  Ofd1, a human disease gene, regulates the length and distal structure of centrioles. , 2010, Developmental cell.

[39]  E. Pugh,et al.  Diffusion of a soluble protein, photoactivatable GFP, through a sensory cilium , 2010, The Journal of General Physiology.

[40]  Danielle K. Manning,et al.  Inv acts as a molecular anchor for Nphp3 and Nek8 in the proximal segment of primary cilia , 2010, Cytoskeleton.

[41]  K. Anderson,et al.  A mouse model for Meckel syndrome reveals Mks1 is required for ciliogenesis and Hedgehog signaling. , 2009, Human molecular genetics.

[42]  Kate Baker,et al.  Making sense of cilia in disease: The human ciliopathies , 2009, American journal of medical genetics. Part C, Seminars in medical genetics.

[43]  K. Oegema,et al.  The hydrolethalus syndrome protein HYLS-1 links core centriole structure to cilia formation. , 2009, Genes & development.

[44]  Colin A. Johnson,et al.  Nesprin-2 interacts with meckelin and mediates ciliogenesis via remodelling of the actin cytoskeleton , 2009, Journal of Cell Science.

[45]  M. Leroux,et al.  Intraflagellar transport and the generation of dynamic, structurally and functionally diverse cilia. , 2009, Trends in cell biology.

[46]  Ellian Wang,et al.  Essential role of nephrocystin in photoreceptor intraflagellar transport in mouse. , 2009, Human molecular genetics.

[47]  E. Formstecher,et al.  hPOC5 is a centrin-binding protein required for assembly of full-length centrioles , 2009, The Journal of cell biology.

[48]  T. Hazlett,et al.  Flagellar membrane localization via association with lipid rafts , 2009, Journal of Cell Science.

[49]  M. P. Healey,et al.  Functional interactions between the ciliopathy-associated Meckel syndrome 1 (MKS1) protein and two novel MKS1-related (MKSR) proteins , 2009, Journal of Cell Science.

[50]  K. Takata,et al.  Immunohistochemical and electron microscopic observations of stromal cells in the human oviduct mucosa , 2008, Medical Molecular Morphology.

[51]  Carolyn M Hutter,et al.  CC2D2A is mutated in Joubert syndrome and interacts with the ciliopathy-associated basal body protein CEP290. , 2008, American journal of human genetics.

[52]  P. Sengupta,et al.  elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8 , 2008, Nature Cell Biology.

[53]  D. Hall,et al.  The Caenorhabditis elegans nephrocystins act as global modifiers of cilium structure , 2008, The Journal of cell biology.

[54]  P. Rakic,et al.  The stumpy gene is required for mammalian ciliogenesis , 2008, Proceedings of the National Academy of Sciences.

[55]  M. Kinoshita,et al.  Epithelial polarity requires septin coupling of vesicle transport to polyglutamylated microtubules , 2008, The Journal of cell biology.

[56]  K. Gull,et al.  An Essential Quality Control Mechanism at the Eukaryotic Basal Body Prior to Intraflagellar Transport , 2007, Traffic.

[57]  B. Margolis,et al.  A novel Crumbs3 isoform regulates cell division and ciliogenesis via importin β interactions , 2007, The Journal of cell biology.

[58]  R. Dildrop,et al.  Ftm is a novel basal body protein of cilia involved in Shh signalling , 2007, Development.

[59]  V. Sheffield,et al.  A Core Complex of BBS Proteins Cooperates with the GTPase Rab8 to Promote Ciliary Membrane Biogenesis , 2007, Cell.

[60]  T. Strom,et al.  Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis , 2007, Nature Genetics.

[61]  Colin A. Johnson,et al.  The Meckel-Gruber Syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation. , 2007, Human molecular genetics.

[62]  Adrian Gherman,et al.  The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia , 2006, Nature Genetics.

[63]  Keith A. Boroevich,et al.  Piecing together a ciliome. , 2006, Trends in genetics : TIG.

[64]  G. Pazour,et al.  The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. , 2006, Molecular biology of the cell.

[65]  Jonathan M. Scholey,et al.  Intraflagellar Transport and Cilium-Based Signaling , 2006, Cell.

[66]  Gáspár Jékely,et al.  Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[67]  Colin A. Johnson,et al.  The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk rat , 2006, Nature Genetics.

[68]  Keith A. Boroevich,et al.  Functional Genomics of the Cilium, a Sensory Organelle , 2005, Current Biology.

[69]  S. Tsukita,et al.  Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia , 2005, Nature Cell Biology.

[70]  M. Bornens,et al.  Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function , 2005, Journal of Cell Science.

[71]  K. Manova,et al.  The Sept4 septin locus is required for sperm terminal differentiation in mice. , 2005, Developmental cell.

[72]  S. Itohara,et al.  Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. , 2005, Developmental cell.

[73]  H. Kayserili,et al.  Mutations in the AHI1 gene, encoding jouberin, cause Joubert syndrome with cortical polymicrogyria. , 2004, American journal of human genetics.

[74]  M. Melkonian,et al.  The ultrastructure of the Chlamydomonas reinhardtii basal apparatus: identification of an early marker of radial asymmetry inherent in the basal body , 2004, Journal of Cell Science.

[75]  A. Hoenger,et al.  Importin α‐regulated nucleation of microtubules by TPX2 , 2003 .

[76]  I. Macara,et al.  Borg/Septin Interactions and the Assembly of Mammalian Septin Heterodimers, Trimers, and Filaments* , 2003, The Journal of Biological Chemistry.

[77]  P. Lefebvre,et al.  The bld1 mutation identifies the Chlamydomonas osm-6 homolog as a gene required for flagellar assembly , 2001, Current Biology.

[78]  J. Rosenbaum,et al.  Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles , 2001, Current Biology.

[79]  D. Hong,et al.  Retinitis Pigmentosa GTPase Regulator (RPGR)-interacting Protein Is Stably Associated with the Photoreceptor Ciliary Axoneme and Anchors RPGR to the Connecting Cilium* , 2001, The Journal of Biological Chemistry.

[80]  A. Ballabio,et al.  Identification of the gene for oral-facial-digital type I syndrome. , 2001, American journal of human genetics.

[81]  I. Vernos,et al.  Ran Induces Spindle Assembly by Reversing the Inhibitory Effect of Importin α on TPX2 Activity , 2001, Cell.

[82]  J. Derisi,et al.  Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. , 2000, Science.

[83]  M. Snyder,et al.  Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. , 2000, Molecular cell.

[84]  J. Bartles,et al.  Compartmentalization, processing and redistribution of the plasma membrane protein CE9 on rodent spermatozoa. Relationship of the annulus to domain boundaries in the plasma membrane of the tail. , 1994, Journal of cell science.

[85]  D. Deretic,et al.  Polarized sorting of rhodopsin on post-Golgi membranes in frog retinal photoreceptor cells , 1991, The Journal of cell biology.

[86]  M. Melkonian,et al.  Terminology and nomenclature of the cytoskeletal elements associated with the flagellar/ciliary apparatus in protists , 1991, Protoplasma.

[87]  K. Wolf,et al.  The restructuring of the flagellar base and the flagellar necklace during spermatogenesis of Ephestia kuehniella Z. (Pyralidae, Lepidoptera) , 1989, Cell and Tissue Research.

[88]  P. Detwiler,et al.  Distribution of membrane proteins in mechanically dissociated retinal rods. , 1988, Investigative ophthalmology & visual science.

[89]  J. N. Thomson,et al.  Mutant sensory cilia in the nematode Caenorhabditis elegans. , 1986, Developmental biology.

[90]  D. Koppel,et al.  A localized surface protein of guinea pig sperm exhibits free diffusion in its domain , 1984, The Journal of cell biology.

[91]  L. Hufnagel Freeze-fracture analysis of membrane events during early neogenesis of cilia in Tetrahymena: changes in fairy-ring morphology and membrane topography. , 1983, Journal of cell science.

[92]  G. Palade,et al.  Fine structure of a periciliary ridge complex of frog retinal rod cells revealed by ultrahigh resolution scanning electron microscopy , 1983, The Journal of cell biology.

[93]  B. Menco Qualitative and quantitative freeze-fracture studies on olfactory and respiratory epithelial surfaces of frog, ox, rat, and dog , 1980, Cell and Tissue Research.

[94]  Richard G. W. Anderson,et al.  THE THREE-DIMENSIONAL STRUCTURE OF THE BASAL BODY FROM THE RHESUS MONKEY OVIDUCT , 1972, The Journal of cell biology.

[95]  L. Boquist CILIA AND VESICULAR PARTICLES IN THE ENDOCRINE PANCREAS OF THE MONGOLIAN GERBIL , 1970, The Journal of cell biology.

[96]  S. Sorokin Reconstructions of centriole formation and ciliogenesis in mammalian lungs. , 1968, Journal of cell science.

[97]  D. L. Ringo FLAGELLAR MOTION AND FINE STRUCTURE OF THE FLAGELLAR APPARATUS IN CHLAMYDOMONAS , 1967, The Journal of cell biology.

[98]  W. Birge,et al.  ULTRASTRUCTURAL ORGANIZATION OF CILIA AND BASAL BODIES OF THE EPITHELIUM OF THE CHOROID PLEXUS IN THE CHICK EMBRYO , 1966, The Journal of cell biology.

[99]  T. Reese,et al.  OLFACTORY CILIA IN THE FROG , 1965, The Journal of cell biology.

[100]  S. Sorokin,et al.  CENTRIOLES AND THE FORMATION OF RUDIMENTARY CILIA BY FIBROBLASTS AND SMOOTH MUSCLE CELLS , 1962, The Journal of cell biology.

[101]  S. Cevik,et al.  Intraflagellar transport: from molecular characterisation to mechanism. , 2008, Frontiers in bioscience : a journal and virtual library.

[102]  A. Hoenger,et al.  Importin alpha-regulated nucleation of microtubules by TPX2. , 2003, The EMBO journal.

[103]  N. Gilula,et al.  THE CILIARY NECKLACE A Ciliary Membrane Specialization , 2003 .

[104]  J. Rosenbaum,et al.  Intraflagellar transport , 2002, Nature Reviews Molecular Cell Biology.

[105]  I. Vernos,et al.  Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. , 2001, Cell.

[106]  M. Lainé,et al.  In vitro effects of taxol on ciliogenesis in quail oviduct. , 1989, Journal of cell science.

[107]  B. Chailley,et al.  Development and functions of the cytoskeleton during ciliogenesis in metazoa , 1988, Biology of the cell.

[108]  R. Gordon,et al.  Chronic effects of nitrogen dioxide on cilia in hamster bronchioles. , 1986, Experimental lung research.

[109]  A. Holstein,et al.  Atlas of human spermatogenesis , 1981 .