ATMOSPHERIC CHARACTERIZATION OF FIVE HOT JUPITERS WITH THE WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE

We probe the structure and composition of the atmospheres of 5 hot Jupiter exoplanets using the Hubble Space Telescope Wide Field Camera 3 (WFC3) instrument. We use the G141 grism (1.1-1.7 $\mu$m) to study TrES-2b, TrES-4b, and CoRoT-1b in transit, TrES-3b in secondary eclipse, and WASP-4b in both. This wavelength region includes a predicted absorption feature from water at 1.4 $\mu$m, which we expect to be nondegenerate with the other molecules that are likely to be abundant for hydrocarbon-poor (e.g. solar composition) hot Jupiter atmospheres. We divide our wavelength regions into 10 bins. For each bin we produce a spectrophotometric light curve spanning the time of transit and/or eclipse. We correct these light curves for instrumental systematics without reference to an instrument model. For our transmission spectra, our mean $1-\sigma$ precision per bin corresponds to variations of 2.1, 2.8, and 3.0 atmospheric scale heights for TrES-2b, TrES-4b, and CoRoT-1b, respectively. We find featureless spectra for these three planets. We are unable to extract a robust transmission spectrum for WASP-4b. For our dayside emission spectra, our mean $1-\sigma$ precision per bin corresponds to a planet-to-star flux ratio of $1.5\times10^{-4}$ and $2.1\times10^{-4}$ for WASP-4b and TrES-3b, respectively. We combine these estimates with previous broadband measurements and conclude that for both planets isothermal atmospheres are disfavored. We find no signs of features due to water. We confirm that WFC3 is suitable for studies of transiting exoplanets, but in staring mode multi-visit campaigns are necessary to place strong constraints on water abundance.

[1]  Avi Shporer,et al.  Observational constraints on tidal effects using orbital eccentricities , 2012, 1202.6379.

[2]  Mark Swain,et al.  ON THE DETECTION OF MOLECULES IN THE ATMOSPHERE OF HD 189733b USING HST NICMOS TRANSMISSION SPECTROSCOPY , 2014, 1401.7601.

[3]  Drake Deming,et al.  SYSTEM PARAMETERS, TRANSIT TIMES, AND SECONDARY ECLIPSE CONSTRAINTS OF THE EXOPLANET SYSTEMS HAT-P-4, TrES-2, TrES-3, and WASP-3 FROM THE NASA EPOXI MISSION OF OPPORTUNITY , 2010, 1011.2229.

[4]  A. Cameron,et al.  SPITZER OBSERVATIONS OF THE THERMAL EMISSION FROM WASP-43b , 2013, 1302.7003.

[5]  P. McCullough,et al.  Considerations for using Spatial Scans with WFC3 , 2012 .

[6]  Starspots and Spin-orbit Alignment in the WASP-4 Exoplanetary System , 2011, 1103.4859.

[7]  N. Crouzet,et al.  WATER VAPOR IN THE SPECTRUM OF THE EXTRASOLAR PLANET HD 189733b. I. THE TRANSIT , 2014, 1407.2462.

[8]  Joshua N. Winn,et al.  THE TRANSIT LIGHT-CURVE PROJECT. XIV. CONFIRMATION OF ANOMALOUS RADII FOR THE EXOPLANETS TrES-4b, HAT-P-3b, AND WASP-12b , 2011, 1103.3078.

[9]  Nicolas Crouzet,et al.  TRANSMISSION SPECTROSCOPY OF EXOPLANET XO-2b OBSERVED WITH HUBBLE SPACE TELESCOPE NICMOS , 2012, 1210.5275.

[10]  David Lafreniere,et al.  NEAR-INFRARED THERMAL EMISSION FROM TrES-3b: A Ks-BAND DETECTION AND AN H-BAND UPPER LIMIT ON THE DEPTH OF THE SECONDARY ECLIPSE , 2010, 1006.0737.

[11]  Gautam Vasisht,et al.  The presence of methane in the atmosphere of an extrasolar planet , 2008, Nature.

[12]  J. Tennyson,et al.  A H13CN/HN13C linelist, model atmospheres and synthetic spectra for carbon stars , 2008, 0807.0717.

[13]  S. Seager,et al.  Exoplanet Atmospheres , 2010 .

[14]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[15]  S. Aigrain,et al.  A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy , 2011, 1109.3251.

[16]  L. Hebb,et al.  Improved parameters for the transiting hot Jupiters WASP-4b and WASP-5b , 2008, 0812.1998.

[17]  Elena Sabbi,et al.  Sky Flats: Generating Improved WFC3 IR Flat-fields , 2011 .

[18]  S. Seager,et al.  ON THE INFERENCE OF THERMAL INVERSIONS IN HOT JUPITER ATMOSPHERES , 2010, 1010.4585.

[19]  David M. Kipping,et al.  ANALYSIS OF KEPLER'S SHORT-CADENCE PHOTOMETRY FOR TrES-2b , 2010, 1006.5680.

[20]  A. Borysow,et al.  Collision-induced absorption coefficients of H2 pairs at temperatures from 60 K to 1000 K , 2002 .

[21]  T. Evans,et al.  An HST optical-to-near-IR transmission spectrum of the hot Jupiter WASP-19b: detection of atmospheric water and likely absence of TiO , 2013, 1307.2083.

[22]  J. Fortney,et al.  THE FLAT TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ1214b FROM WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE , 2011, 1111.5621.

[23]  M. Holman,et al.  THE TRANSIT LIGHT CURVE PROJECT. XI. SUBMILLIMAGNITUDE PHOTOMETRY OF TWO TRANSITS OF THE BLOATED PLANET WASP-4b , 2009, 0901.4346.

[24]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[25]  J. Walsh,et al.  WFC3 SMOV proposal 11552: Calibration of the G141 grism , 2009 .

[26]  David Charbonneau,et al.  TrES-2: The First Transiting Planet in the Kepler Field , 2006, astro-ph/0609335.

[27]  P. McCullough,et al.  PROBING THE TERMINATOR REGION ATMOSPHERE OF THE HOT-JUPITER XO-1b WITH TRANSMISSION SPECTROSCOPY , 2010, 1002.2434.

[28]  Drake Deming,et al.  THE BROADBAND INFRARED EMISSION SPECTRUM OF THE EXOPLANET TrES-3 , 2009, 0909.5221.

[29]  Drake Deming,et al.  A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b , 2014, Nature.

[30]  Observatoire de Geneve,et al.  VLT transit and occultation photometry for the bloated planet CoRoT-1b , 2009, 0905.4571.

[31]  P. McCullough WFC3 TV2 Testing: IR Intrapixel sensitivity , 2008 .

[32]  David Charbonneau,et al.  TrES-4: A Transiting Hot Jupiter of Very Low Density , 2007, 0708.0834.

[33]  M. E. Everett,et al.  A NEW SPECTROSCOPIC AND PHOTOMETRIC ANALYSIS OF THE TRANSITING PLANET SYSTEMS TrES-3 AND TrES-4 , 2008, 0809.4589.

[34]  University of Exeter,et al.  A new look at NICMOS transmission spectroscopy of HD 189733, GJ-436 and XO-1: no conclusive evidence for molecular features , 2010, 1010.1753.

[35]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[36]  R. L. Kurucz,et al.  New Grids of ATLAS9 Model Atmospheres , 2004, astro-ph/0405087.

[37]  Marcell Tessenyi,et al.  Probing the extreme planetary atmosphere of WASP-12b , 2012, 1205.4736.

[38]  T. Brown Transmission Spectra as Diagnostics of Extrasolar Giant Planet Atmospheres , 2001, astro-ph/0101307.

[39]  Drake Deming,et al.  EXOPLANET TRANSIT SPECTROSCOPY USING WFC3: WASP-12 b, WASP-17 b, AND WASP-19 b , 2013, 1310.2949.

[40]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[41]  A. Renzini,et al.  The Stellar Populations of Galaxies , 1992 .

[42]  Jonathan Tennyson,et al.  BLIND EXTRACTION OF AN EXOPLANETARY SPECTRUM THROUGH INDEPENDENT COMPONENT ANALYSIS , 2013, 1301.4041.

[43]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.

[44]  A. Burrows,et al.  DETECTION OF A TEMPERATURE INVERSION IN THE BROADBAND INFRARED EMISSION SPECTRUM OF TrES-4 , 2008, 0810.0021.

[45]  Sara Seager,et al.  Exoplanet Atmospheres: Physical Processes , 2010 .

[46]  E. Agol,et al.  SECONDARY ECLIPSE PHOTOMETRY OF WASP-4b WITH WARM SPITZER , 2010, 1011.4066.

[47]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[48]  C. Moutou,et al.  Transiting exoplanets from the CoRoT space mission , 2008, Astronomy & Astrophysics.

[49]  C. Moutou,et al.  Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the Hubble Space Telescope , 2007, 0712.1374.

[50]  A. Burrows,et al.  A ground-based K S-band detection of the thermal emission from the transiting exoplanet WASP-4b , 2011, 1104.0041.

[51]  Nikku Madhusudhan,et al.  C/O RATIO AS A DIMENSION FOR CHARACTERIZING EXOPLANETARY ATMOSPHERES , 2012, 1209.2412.

[52]  Debra A. Fischer,et al.  The Exoplanet Orbit Database , 2010, 1012.5676.

[53]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[54]  John Southworth,et al.  Homogeneous studies of transiting extrasolar planets – I. Light-curve analyses , 2008, 0802.3764.

[55]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.

[56]  B. Scott Gaudi,et al.  Achieving Better Than 1 Minute Accuracy in the Heliocentric and Barycentric Julian Dates , 2010, 1005.4415.

[57]  T. Barman Identification of Absorption Features in an Extrasolar Planet Atmosphere , 2007, 0704.1114.

[58]  David Charbonneau,et al.  TrES-3: A Nearby, Massive, Transiting Hot Jupiter in a 31 Hour Orbit , 2007, 0705.2004.

[59]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[60]  F. Fressin,et al.  THE ATMOSPHERES OF THE HOT-JUPITERS KEPLER-5b AND KEPLER-6b OBSERVED DURING OCCULTATIONS WITH WARM-SPITZER AND KEPLER , 2011, 1102.0555.