Shear assessment of a reinforced concrete bridge deck slab according to level‐of‐approximation approach

International Federation for Structural Concrete Reinforced concrete (RC) slabs without shear reinforcement are commonly used for existing bridge structures. For such structures, shear and punching can be the governing failure modes at the ultimate limit state if subjected to large concentrated loads. The aim of this study is to examine a structured approach for the analyses of the RC bridge deck slabs, which make up a considerable proportion of the currently used bridge decks. The method used for analyses is the levels-of-approximation introduced in fib Model Code for Concrete Structures 2010. The different levels include simplified calculation method, linear finite element analysis as well as non-linear finite element analysis. The differences between analysis methods at different levels of analyses were discussed regarding one-way shear and punching shear behavior of the slab.

[1]  B V Rangan Punching shear strength of reinforced concrete slabs , 1987 .

[2]  Jiangpeng Shu,et al.  Development of modelling strategies for two-way RC slabs , 2015 .

[3]  S. Amir,et al.  Compressive Membrane Action in Prestressed Concrete Deck Slabs , 2014 .

[4]  G Marzahn,et al.  Richtlinie zur Nachrechnung von Strassenbruecken im Bestand - Veranlassung und Grundsaetze / About the provisions for evaluating necessary upgrades of older road bridges , 2012 .

[5]  Jiangpeng Shu,et al.  Damage detection on railway bridges using Artificial Neural Network and train-induced vibrations , 2012 .

[6]  Gert Heshe,et al.  DS/ENV 1992-1-1 NAD. National Application Document for Eurocode 2: Design of Concrete Structures, Part 1-1: General Rules and Rules for Buildings , 1993 .

[7]  DA Dick Hordijk,et al.  Ruytenschildt Bridge: Field and laboratory testing , 2016 .

[8]  Gero Marzahn Zur Richtlinie für die Nachrechnung von Straßenbrücken im Bestand (Nachrechnungsrichtlinie) , 2011 .

[9]  H. Marzouk,et al.  Finite Element Analysis of High-Strength Concrete Slabs , 1993 .

[10]  A. Muttoni,et al.  Internal force distribution in RC slabs subjected to punching shear , 2017 .

[11]  Jiangpeng Shu,et al.  A multi-level structural assessment strategy for reinforced concrete bridge deck slabs , 2017 .

[12]  Patrick Bamonte,et al.  Fire Design of Concrete Structures based on a Levels-of-Approximation Approach , 2015 .

[13]  Per Kettil,et al.  Modelling the structural behaviour of frost-damaged reinforced concrete structures , 2013 .

[14]  Maria Anna Polak,et al.  Modeling Punching Shear of Reinforced Concrete Slabs Using Layered Finite Elements , 1998 .

[15]  Mario Plos,et al.  Development of a Guideline for Load and Resistance Assessment of Existing European Railway Bridges , 2006 .

[16]  Norbert Randl,et al.  Punching strength of flat plates reinforced with UHPC and double-headed studs , 2017 .

[17]  Beatrice Belletti,et al.  Analytical and numerical evaluation of the design shear resistance of reinforced concrete slabs , 2014 .

[18]  Arto Puurula,et al.  Assessment of the Strengthening of an RC Railway Bridge with CFRP Utilizing a Full-Scale Failure Test and Finite-Element Analysis , 2015 .

[19]  Aurelio Muttoni,et al.  Design for punching of prestressed concrete slabs , 2013 .

[20]  Johann Kollegger,et al.  Vergleich der rechnerischen Querkrafttragfähigkeit von Bestandsbrücken nach Eurocode 2 und fib Model Code 2010 , 2012 .

[21]  Joost C. Walraven,et al.  Shear in One-Way Slabs under Concentrated Load Close to Support , 2013 .

[22]  Bahram M. Shahrooz,et al.  Destructive Testing of Decommissioned Concrete Slab Bridge , 1994 .

[23]  L. Bertolini,et al.  Inspection and Condition Assessment , 2005 .

[24]  Phillipe Menetrey Relationships between Flexural and Punching Failure , 1998 .

[25]  Beatrice Belletti,et al.  Evaluation of compressive membrane action effects on punching shear resistance of reinforced concrete slabs , 2015 .

[26]  M. Hallgren Punching Shear Capacity of Reinforced High Strength Concrete Slabs , 1996 .

[27]  Aurelio Muttoni,et al.  Assessing punching shear failure in reinforced concrete flat slabs subjected to localised impact loading , 2014 .

[28]  Daniel Honfi,et al.  Decision support for bridge condition assessment , 2017 .

[29]  J.G.M. van Mier,et al.  Strain-softening of concrete under multiaxial loading conditions , 1984 .

[30]  Luc Taerwe,et al.  fib model code for concrete structures 2010 , 2013 .

[31]  Alfred Strauss,et al.  Shear failure of pre-stressed concrete T-shaped girders: Experiment and nonlinear modeling , 2015 .

[32]  Beatrice Belletti,et al.  Safety assessment of punching shear failure according to the level of approximation approach , 2015 .

[33]  Jonny Nilimaa,et al.  Assessment of concrete double-trough bridges , 2015 .

[34]  Jiangpeng Shu,et al.  Prediction of punching behaviour of RC slabs using continuum non-linear FE analysis , 2016 .

[35]  Jiangpeng Shu,et al.  The application of a damage detection method using Artificial Neural Network and train-induced vibrations on a simplified railway bridge model , 2013 .

[36]  Aurelio Muttoni,et al.  Punching shear strength of reinforced concrete slabs without transverse reinforcement , 2008 .

[37]  Michael P. Collins,et al.  COMPRESSION RESPONSE OF CRACKED REINFORCED CONCRETE , 1993 .

[38]  Aurelio Muttoni,et al.  Punching Tests of Slabs with Low Reinforcement Ratios. Paper by Stefano Guadalini, Oliver Burdet, and , 2009 .

[39]  Eva O. L. Lantsoght,et al.  Levels of approximation for the shear assessment of reinforced concrete slab bridges , 2017 .

[41]  J. S. Pressley,et al.  Destructive load testing of bridge no. 1049: analyses, predictions and testing , 2004 .

[42]  D. Hordijk Local approach to fatigue of concrete , 1991 .