Efficient mesh deformation using tetrahedron control mesh

It is a challenging problem to interactively deform densely sampled complex objects. This paper proposed an easy but efficient approach to it by using coarse control meshes to embed the target objects. The control mesh can be efficiently deformed by various existing methods, and then the target object can be accordingly deformed by interpolation. One of the most simplest interpolation methods is to use the barycentric coordinates, which however generates apparent first-order discontinuity artifacts across the boundary due to its piecewise linear property. To avoid such artifacts, this paper introduced a modified barycentric interpolation (modified-BI) technique. The central idea is to add a local transformation at each control vertex for interpolation, so that we can minimize the first-order discontinuity by optimizing the local transformations. We also minimize the second order derivatives of the interpolation function to avoid undesired vibrations. While focus on deforming 3D objects embed in tetrahedron meshes, the proposed method is applicable to 2D image objects embed in planar triangular meshes. The experimental results in both 2D and 3D demonstrated the success and advantages of the proposed method.

[1]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, SIGGRAPH 2007.

[2]  Marc Alexa,et al.  A sketch-based interface for detail-preserving mesh editing , 2005, SIGGRAPH 2005.

[3]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[4]  H. Shum,et al.  Subspace gradient domain mesh deformation , 2006, SIGGRAPH 2006.

[5]  Eugene Fiume,et al.  Wires: a geometric deformation technique , 1998, SIGGRAPH.

[6]  Leif Kobbelt,et al.  An intuitive framework for real-time freeform modeling , 2004, SIGGRAPH 2004.

[7]  Adam Finkelstein,et al.  A framework for geometric warps and deformations , 2002, TOGS.

[8]  Kenneth I. Joy,et al.  Free-form deformations with lattices of arbitrary topology , 1996, SIGGRAPH.

[9]  Daniel Cohen-Or,et al.  Three-dimensional distance field metamorphosis , 1998, TOGS.

[10]  Takeo Igarashi,et al.  As-rigid-as-possible shape manipulation , 2005, ACM Trans. Graph..

[11]  Leif Kobbelt,et al.  Real‐Time Shape Editing using Radial Basis Functions , 2005, Comput. Graph. Forum.

[12]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[13]  Michael Garland,et al.  Sketching mesh deformations , 2005, SI3D.

[14]  Alan H. Barr,et al.  Global and local deformations of solid primitives , 1984, SIGGRAPH.

[15]  Jovan Popović,et al.  Mesh-based inverse kinematics , 2005, SIGGRAPH 2005.

[16]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[17]  Kun Zhou,et al.  Geometrically based potential energy for simulating deformable objects , 2006, The Visual Computer.

[18]  Daniel Cohen-Or,et al.  GPU-assisted positive mean value coordinates for mesh deformations , 2007, Symposium on Geometry Processing.

[19]  Sabine Coquillart,et al.  Extended free-form deformation: a sculpturing tool for 3D geometric modeling , 1990, SIGGRAPH.

[20]  Scott Schaefer,et al.  Smooth subdivision of tetrahedral meshes , 2004, SGP '04.

[21]  Jovan Popović,et al.  Deformation transfer for triangle meshes , 2004, SIGGRAPH 2004.

[22]  Kun Zhou,et al.  Mesh puppetry: cascading optimization of mesh deformation with inverse kinematics , 2007, SIGGRAPH 2007.

[23]  D. Levin,et al.  Linear rotation-invariant coordinates for meshes , 2005, SIGGRAPH 2005.

[24]  Marc Alexa,et al.  Differential coordinates for local mesh morphing and deformation , 2003, The Visual Computer.

[25]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, SIGGRAPH 2004.

[26]  Markus H. Gross,et al.  Interactive Virtual Materials , 2004, Graphics Interface.

[27]  Olga Sorkine-Hornung,et al.  Context‐Aware Skeletal Shape Deformation , 2007, Comput. Graph. Forum.

[28]  J. Warren,et al.  Image deformation using moving least squares , 2006, SIGGRAPH 2006.

[29]  Kevin G. Der,et al.  Inverse kinematics for reduced deformable models , 2006, SIGGRAPH 2006.

[30]  Carlo H. Séquin,et al.  Functional optimization for fair surface design , 1992, SIGGRAPH.

[31]  Hujun Bao,et al.  Poisson shape interpolation , 2005, SPM '05.

[32]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[33]  John F. Hughes,et al.  Direct manipulation of free-form deformations , 1992, SIGGRAPH.

[34]  Lizhuang Ma,et al.  A new free-form deformation through the control of parametric surfaces , 1996, Comput. Graph..

[35]  John M. Snyder,et al.  Large mesh deformation using the volumetric graph Laplacian , 2005, SIGGRAPH '05.

[36]  J. Warren,et al.  Mean value coordinates for closed triangular meshes , 2005, SIGGRAPH 2005.

[37]  Andrew P. Witkin,et al.  Variational surface modeling , 1992, SIGGRAPH.

[38]  Thaddeus Beier,et al.  Feature-based image metamorphosis , 1992, SIGGRAPH.

[39]  Hans-Peter Seidel,et al.  Skeleton‐based Variational Mesh Deformations , 2007, Comput. Graph. Forum.

[40]  Hujun Bao,et al.  An efficient large deformation method using domain decomposition , 2006, Comput. Graph..

[41]  Christian Rössl,et al.  Harmonic Guidance for Surface Deformation , 2005, Comput. Graph. Forum.