Four Classes of Pattern-Avoiding Permutations Under One Roof: Generating Trees with Two Labels

Many families of pattern-avoiding permutations can be described by a generating tree in which each node carries one integer label, computed recursively via a rewriting rule. A typical example is that of $123$-avoiding permutations. The rewriting rule automatically gives a functional equation satisfied by the bivariate generating function that counts the permutations by their length and the label of the corresponding node of the tree. These equations are now well understood, and their solutions are always algebraic series. Several other families of permutations can be described by a generating tree in which each node carries two integer labels. To these trees correspond other functional equations, defining 3-variate generating functions. We propose an approach to solving such equations. We thus recover and refine, in a unified way, some results on Baxter permutations, $1234$-avoiding permutations, $2143$-avoiding (or: vexillary) involutions and $54321$-avoiding involutions. All the generating functions we obtain are D-finite, and, more precisely, are diagonals of algebraic series. Vexillary involutions are exceptionally simple: they are counted by Motzkin numbers, and thus have an algebraic generating function. In passing, we exhibit an interesting link between Baxter permutations and the Tutte polynomial of planar maps.

[1]  G. Fayolle,et al.  Random Walks in the Quarter-Plane: Algebraic Methods, Boundary Value Problems and Applications , 1999 .

[2]  Neil J. A. Sloane,et al.  The encyclopedia of integer sequences , 1995 .

[3]  Doron Zeilberger,et al.  The Umbral Transfer-Matrix Method. I. Foundations , 2000, J. Comb. Theory, Ser. A.

[4]  Aaron D. Jaggard Prefix Exchanging and Pattern Avoidance by Involutions , 2002, Electron. J. Comb..

[5]  Elisa Pergola,et al.  Enumeration of vexillary involutions which are equal to their mirror/complement , 2000, Discret. Math..

[6]  Christian Krattenthaler,et al.  Permutations with Restricted Patterns and Dyck Paths , 2000, Adv. Appl. Math..

[7]  Eric Babson,et al.  Generalized permutation patterns and a classification of the Mahonian statistics , 2000 .

[8]  Philippe Flajolet,et al.  Basic analytic combinatorics of directed lattice paths , 2002, Theor. Comput. Sci..

[9]  Alain Lascoux,et al.  Schubert polynomials and the Littlewood-Richardson rule , 1985 .

[10]  Julian West,et al.  Permutations with forbidden subsequences, and, stack-sortable permutations , 1990 .

[11]  L. Lipshitz,et al.  The diagonal of a D-finite power series is D-finite , 1988 .

[12]  Dominique Gouyou-Beauchamps,et al.  Standard Young Tableaux of Height 4 and 5 , 1989, Eur. J. Comb..

[13]  Olivier Guibert,et al.  Vexillary Involutions are Enumerated by Motzkin Numbers , 2001 .

[14]  Zvezdelina Stankova Classification of Forbidden Subsequences of Length 4 , 1996, Eur. J. Comb..

[15]  Julian West,et al.  Generating trees and the Catalan and Schröder numbers , 1995, Discret. Math..

[16]  Mireille Bousquet-Melou,et al.  Counting Walks in the Quarter Plane , 2017, 1708.06192.

[17]  Toufik Mansour,et al.  Counting occurrences of a pattern of type (1, 2) or (2, 1) in permutations , 2002, Adv. Appl. Math..

[18]  Ira M. Gessel,et al.  Lattice Walks in Zd and Permutations with No Long Ascending Subsequences , 1997, Electron. J. Comb..

[19]  Richard P. Stanley,et al.  Differentiably Finite Power Series , 1980, Eur. J. Comb..

[20]  Ira M. Gessel,et al.  Symmetric functions and P-recursiveness , 1990, J. Comb. Theory, Ser. A.

[21]  Mireille Bousquet-Mélou,et al.  Walks confined in a quadrant are not always D-finite , 2003, Theor. Comput. Sci..

[22]  Serge Dulucq,et al.  Stack words, standard tableaux and Baxter permutations , 1996, Discret. Math..

[23]  Julian West,et al.  A New Class of Wilf-Equivalent Permutations , 2001 .

[24]  Darla Kremer Permutations with forbidden subsequences and a generalized Schro"der number , 2000, Discret. Math..

[25]  L. Lipshitz,et al.  D-finite power series , 1989 .

[26]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[27]  Olivier Guibert Combinatoire des permutations à motifs exclus en liaison avec mots, cartes planaires et tableaux de Young , 1995 .

[28]  Miklós Bóna Exact Enumeration of 1342-Avoiding Permutations: A Close Link with Labeled Trees and Planar Maps , 1997, J. Comb. Theory, Ser. A.

[29]  Marko Petkovšek,et al.  A=B : 等式証明とコンピュータ , 1997 .

[30]  Fan Chung Graham,et al.  The Number of Baxter Permutations , 1978, J. Comb. Theory, Ser. A.

[31]  C.L Mallows,et al.  Baxter Permutations Rise Again , 1979, J. Comb. Theory, Ser. A.

[32]  Mireille Bousquet-Mélou,et al.  Linear recurrences with constant coefficients: the multivariate case , 2000, Discret. Math..

[33]  Doron Zeilberger The Umbral Transfer-Matrix Method , III : Counting Animals , 2001 .

[34]  Mireille Bousquet-Mélou,et al.  Generating functions for generating trees , 2002, Discret. Math..

[35]  Mireille Bousquet-M'elou,et al.  Walks in the quarter plane: Kreweras’ algebraic model , 2004, math/0401067.

[36]  R. J. Baxter Dichromatic polynomials and Potts models summed over rooted maps , 2000 .