Encyclopedia of carbon nanoforms

[1]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[2]  D. Bethune,et al.  Bond Lengths in Free Molecules of Buckminsterfullerene, C60, from Gas-Phase Electron Diffraction , 1991, Science.

[3]  X. B. Zhang,et al.  A Formation Mechanism for Catalytically Grown Helix-Shaped Graphite Nanotubes , 1994, Science.

[4]  Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm. , 2008, Journal of the American Chemical Society.

[5]  Guangzhi Yang,et al.  Hollow carbon nanospheres prepared by carbonizing polymethylmethacrylate/polyacrylonitrile core/shell polymer particles , 2008 .

[6]  D. Tománek,et al.  ``Bucky Shuttle'' Memory Device: Synthetic Approach and Molecular Dynamics Simulations , 1999 .

[7]  Noriaki Sano,et al.  Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen , 2003 .

[8]  Y. Murata,et al.  Synthesis and properties of endohedral C60 encapsulating molecular hydrogen. , 2006, Journal of the American Chemical Society.

[9]  John Robertson,et al.  Negatively curved spongy carbon , 2002 .

[10]  Matthias Rainer,et al.  Medicinal applications of fullerenes , 2007, International journal of nanomedicine.

[11]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[12]  Yoshiyuki Hattori,et al.  INVESTIGATION OF HYDROGEN STORAGE CAPACITY OF VARIOUS CARBON MATERIALS , 2007 .

[13]  P. W. Rabideau,et al.  Synthesis of a new C32H12 bowl-shaped aromatic hydrocarbon , 1997 .

[14]  David E. Luzzi,et al.  Tumbling atoms and evidence for charge transfer in La2@C80@SWNT , 2000 .

[15]  E. Wang,et al.  Lithium storage in polymerized carbon nitride nanobells , 2001 .

[16]  Kunihiro Tsuchida,et al.  Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns. , 2008, ACS nano.

[17]  M. Monthioux,et al.  Texturising and structurising mechanisms of carbon nanofilaments during growth , 2007 .

[18]  David E. Luzzi,et al.  Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis , 2000 .

[19]  Y. Hanein,et al.  Integration of suspended carbon nanotubes into micro-fabricated devices , 2009 .

[20]  K. O’Malley,et al.  Fullerene-based antioxidants and neurodegenerative disorders. , 2001, Parkinsonism & related disorders.

[21]  Ihara,et al.  Toroidal forms of graphitic carbon. II. Elongated tori. , 1993, Physical review. B, Condensed matter.

[22]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  George C Schatz,et al.  Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Cheol-Eui Lee,et al.  Hydrogen storage capacity of different carbon nanostructures in ambient conditions , 2005 .

[25]  J. Nagy,et al.  Structural origin of coiling in coiled carbon nanotubes , 2005 .

[26]  L. Qin,et al.  Determination of the chiral indices (n,m) of carbon nanotubes by electron diffraction. , 2007, Physical chemistry chemical physics : PCCP.

[27]  R. Smalley,et al.  Cutting Single-Wall Carbon Nanotubes through Fluorination , 2002 .

[28]  M. Dresselhaus,et al.  Synthesis and electronic properties of coalesced graphitic nanocones , 2005 .

[29]  Marc Monthioux,et al.  Abundance of encapsulated C60 in single-wall carbon nanotubes , 1999 .

[30]  M. Marchetti,et al.  Evaluation of the Tribological behavior of Nano-Onions in Krytox 143AB , 2004 .

[31]  Fujita,et al.  Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. , 1996, Physical review. B, Condensed matter.

[32]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[33]  S. Margadonna,et al.  Recent advances in fullerene superconductivity , 2002 .

[34]  H. Schwarz Gesammelte mathematische Abhandlungen , 1970 .

[35]  W. H. Powell,et al.  Numbering of Fullerenes (IUPAC Recommendations 2004) , 2005 .

[36]  V. Blank,et al.  Physical properties of superhard and ultrahard fullerites created from solid C60 by high-pressure-high-temperature treatment , 1997 .

[37]  Ihara,et al.  Toroidal forms of graphitic carbon. , 1993, Physical review. B, Condensed matter.

[38]  Tow Chong Chong,et al.  Carbon Nanowalls Grown by Microwave Plasma Enhanced Chemical Vapor Deposition , 2002 .

[39]  A. Greiner,et al.  Multi-wall carbon nanotubes with uniform chirality: evidence for scroll structures , 2003 .

[40]  K. Kusakabe,et al.  Peculiar Localized State at Zigzag Graphite Edge , 1996 .

[41]  J. Ting,et al.  Beaded carbon tubes , 1999 .

[42]  Q. X. Jia,et al.  Ultralong single-wall carbon nanotubes , 2004, Nature materials.

[43]  T. F. Boggess,et al.  A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials , 1993 .

[44]  N. Grobert,et al.  Doping of carbon nanotubes with nitrogen improves protein coverage whilst retaining correct conformation , 2008, Nanotechnology.

[45]  A. Rinzler,et al.  Sorting out carbon nanotube electronics , 2006, Nature nanotechnology.

[46]  P. Lambin,et al.  ATOMIC AND ELECTRONIC STRUCTURES OF LARGE AND SMALL CARBON TORI , 1998 .

[47]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[48]  John W. Mintmire,et al.  Electronic and structural properties of carbon nanotubes , 1995 .

[49]  D. Pontiroli,et al.  Li4C60: a polymeric fulleride with a two-dimensional architecture and mixed interfullerene bonding motifs. , 2004, Journal of the American Chemical Society.

[50]  S. Roche,et al.  Charge transport in disordered graphene-based low dimensional materials , 2008, 0809.4630.

[51]  Yang Yang,et al.  High-throughput solution processing of large-scale graphene. , 2009, Nature nanotechnology.

[52]  C. Ewels,et al.  Nitrogen doping in carbon nanotubes. , 2005, Journal of nanoscience and nanotechnology.

[53]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[54]  M. Dresselhaus,et al.  Cone-type multi-shell in the hollow core of multi-wall carbon nanotube , 2003 .

[55]  P. Ajayan,et al.  Self‐compression and diamond formation in carbon onions , 1997 .

[56]  S. B. Lee,et al.  Carbon onions: carriers of the 217.5 nm interstellar absorption feature. , 2003, Physical review letters.

[57]  David Tománek,et al.  A novel hybrid carbon material. , 2007, Nature nanotechnology.

[58]  D. Klein,et al.  Icosahedral symmetry carbon cage molecules , 1986, Nature.

[59]  M. Monthioux Filling single-wall carbon nanotubes , 2002 .

[60]  Roger Bacon,et al.  Growth, Structure, and Properties of Graphite Whiskers , 1960 .

[61]  Yuan‐Zhi Tan,et al.  The stabilization of fused-pentagon fullerene molecules. , 2009, Nature chemistry.

[62]  Sumio Iijima,et al.  Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy , 1980 .

[63]  Charlier,et al.  Coalescence of single-walled carbon nanotubes , 2000, Science.

[64]  J. Tour,et al.  Soluble ultra-short single-walled carbon nanotubes. , 2006, Journal of the American Chemical Society.

[65]  I. Ponomareva,et al.  Defect formation in a carbon onion upon irradiation with Ar ions , 2004 .

[66]  Bingshe Xu Prospects and research progress in nano onion-like fullerenes , 2008 .

[67]  Mauricio Terrones,et al.  Graphitic structures: from planar to spheres, toroids and helices , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[68]  R. Ruoff,et al.  Radial single-layer nanotubes , 1993, Nature.

[69]  Ihara,et al.  Helically coiled cage forms of graphitic carbon. , 1993, Physical review. B, Condensed matter.

[70]  D. Ugarte Curling and closure of graphitic networks under electron-beam irradiation , 1992, Nature.

[71]  H. Gibson,et al.  Purification of endohedral trimetallic nitride fullerenes in a single, facile step. , 2005, Journal of the American Chemical Society.

[72]  Nicole Grobert,et al.  Carbon nanotubes – becoming clean , 2007 .

[73]  P. Pikhitsa,et al.  Investigations of NanoBud formation , 2007 .

[74]  David Tománek,et al.  Scrolls and nested tubes in multiwall carbon nanotubes , 2002 .

[75]  C. Mcfadden,et al.  Adsorption of helical aromatic molecules: heptahelicene on Ni(1 1 1) , 2003 .

[76]  Masaki Ozawa,et al.  Continuously Growing Spiral Carbon Nanoparticles as the Intermediates in the Formation of Fullerenes and Nanoonions , 2002 .

[77]  J. Nagy,et al.  Ring formations from catalytically synthesized carbon nanotubes , 1999 .

[78]  P. Lambin,et al.  Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. , 2008, Nature nanotechnology.

[79]  Benedict,et al.  Prediction of a pure-carbon planar covalent metal. , 1996, Physical review. B, Condensed matter.

[80]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[81]  Malcolm L. H. Green,et al.  High-resolution electron microscopy studies of a microporous carbon produced by arc-evaporation , 1994 .

[82]  P. Midgley,et al.  Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen. , 2006, Small.

[83]  A. Mackay,et al.  Diamond from graphite , 1991, Nature.

[84]  Phaedon Avouris,et al.  Nanotube electronics and optoelectronics , 2006 .

[85]  D. Galvão,et al.  Möbius and twisted graphene nanoribbons: stability, geometry, and electronic properties. , 2008, The Journal of chemical physics.

[86]  J. Van Landuyt,et al.  The Texture of Catalytically Grown Coil-Shaped Carbon Nanotubules , 1994 .

[87]  N. Tang,et al.  High magnetization helical carbon nanofibers produced by nanoparticle catalysis. , 2006, The journal of physical chemistry. B.

[88]  J. Tersoff,et al.  Negative-curvature fullerene analog of C60. , 1992, Physical review letters.

[89]  R. Baughman,et al.  Hydrogen storage in carbon nanoscrolls: An atomistic molecular dynamics study , 2007 .

[90]  N. Xu,et al.  Polymerized carbon nanobells and their field-emission properties , 1999 .

[91]  K. Jenkins,et al.  Operation of graphene transistors at gigahertz frequencies. , 2008, Nano letters.

[92]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[93]  Benjamin J. Schwartz,et al.  Reappraising the Need for Bulk Heterojunctions in Polymer−Fullerene Photovoltaics: The Role of Carrier Transport in All-Solution-Processed P3HT/PCBM Bilayer Solar Cells , 2009 .

[94]  Jing Lu,et al.  Structural and Electronic Study of Nanoscrolls Rolled up by a Single Graphene Sheet , 2007 .

[95]  E. Wang,et al.  Size-controlled short nanobells: Growth and formation mechanism , 2000 .

[96]  L. Chernozatonskii Barrelenes/tubelenes — a new class of cage carbon molecules and its solids , 1992 .

[97]  Pw Fowler,et al.  How unusual is C60? Magic numbers for carbon clusters , 1986 .

[98]  H. W. Kroto,et al.  The formation of quasi-icosahedral spiral shell carbon particles , 1988, Nature.

[99]  S. Iijima,et al.  Synthesis of carbon nanohorn particles by simple pulsed arc discharge ignited between pre-heated carbon rods , 2004 .

[100]  Daniel Ugarte Onion-like graphitic particles , 1995 .

[101]  Introducing a twist in carbon nanotubes , 2006 .

[102]  Hyoun-woo Kim,et al.  Synthesis of bamboo-shaped carbon-nitrogen nanotubes using C2H2-NH3-Fe(CO)5 system , 2002 .

[103]  Nichols,et al.  Negatively curved graphitic sheet model of amorphous carbon. , 1992, Physical review letters.

[104]  I. Kinloch,et al.  High Performance Fibres from ‘Dog Bone’ Carbon Nanotubes , 2007 .

[105]  Van Haesendonck C,et al.  Imaging the elastic properties of coiled carbon nanotubes with atomic force microscopy , 2000, Physical review letters.

[106]  D. Carroll,et al.  Fullerene exposures with oysters: embryonic, adult, and cellular responses. , 2009, Environmental science & technology.

[107]  Akagi,et al.  Electronic structure of helically coiled cage of graphitic carbon. , 1995, Physical review letters.

[108]  Marc Monthioux,et al.  Who should be given the credit for the discovery of carbon nanotubes , 2006 .

[109]  Luc Henrard,et al.  Charge carriers in few-layer graphene films. , 2006, Physical review letters.

[110]  S. Iijima,et al.  One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. , 2000, Physical review letters.

[111]  S. Evoy,et al.  Nanomechanical resonance studies of carbon nanotube peapod bundles , 2005 .

[112]  S. C. O'brien,et al.  Lanthanum complexes of spheroidal carbon shells , 1985 .

[113]  M. Yudasaka,et al.  Nano-aggregates of single-walled graphitic carbon nano-horns , 1999 .

[114]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[115]  D. J. Wallis,et al.  A novel route to aligned nanotubes and nanofibres using laser-patterned catalytic substrates , 2000 .

[116]  Vijay K. Varadan,et al.  Synthesis of carbon nanocoils by microwave CVD , 2002 .

[117]  J. Nagy,et al.  Coiled carbon nanotube structures with supraunitary nonhexagonal to hexagonal ring ratio , 2002 .

[118]  Jibao He,et al.  Laser-induced production of large carbon-based toroids , 2005 .

[119]  T. Akita,et al.  A new route to carbon nanotubes , 2003 .

[120]  J. Nagy,et al.  Structural and electronic properties of bent carbon nanotubes , 1995 .

[121]  Yahachi Saito,et al.  Nanoparticles and filled nanocapsules , 1995 .

[122]  B. Vacher,et al.  Diamond-derived carbon onions as lubricant additives , 2008 .

[123]  Y. Solonin Structure and Electrochemical Activity of C60 Fullerite Films , 2001 .

[124]  Akagi,et al.  Electronic structure of helically coiled carbon nanotubes: Relation between the phason lines and energy band features. , 1996, Physical review. B, Condensed matter.

[125]  T. Ebbesen,et al.  Graphitic cones and the nucleation of curved carbon surfaces , 1997, Nature.

[126]  Richard W. Siegel,et al.  Selective Attachment of Gold Nanoparticles to Nitrogen-Doped Carbon Nanotubes , 2003 .

[127]  D. Hui,et al.  Coiled carbon nanotubes: Synthesis and their potential applications in advanced composite structures , 2006 .

[128]  M. Yudasaka,et al.  Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition , 1997 .

[129]  Kyeongjae Cho,et al.  Ab Initio Study of Doped Carbon Nanotube Sensors , 2003 .

[130]  Xiaomin Wang,et al.  Tribological property of onion-like fullerenes as lubricant additive , 2008 .

[131]  Nicole Grobert,et al.  Nanotubes – grow or go? , 2006 .

[132]  Ji Liang,et al.  Transformation of carbon nanotubes to nanoparticles by ball milling process , 1999 .

[133]  S. Iijima The 60-carbon cluster has been revealed , 1987 .

[134]  P. Lambin,et al.  Structural and electronic properties of coiled and curled, carbon nanotubes having a large number of pentagon-heptagon pairs , 2003 .

[135]  J. M. Cowley,et al.  Structures of carbon nanotubes studied by HRTEM and nanodiffraction , 1994 .

[136]  P. Bernier,et al.  Synthesis of highly nitrogen-doped multi-walled carbon nanotubes. , 2003, Chemical communications.

[137]  Jean-Christophe Charlier,et al.  Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process , 2004 .

[138]  H. Kroto C60B buckminsterfullerene, other fullerenes and the icospiral shell , 1989 .

[139]  T. Pichler,et al.  Study on hydrogen uptake of functionalized carbon nanotubes , 2006 .

[140]  C. P. Chen,et al.  Synthesis of magnetic nano-composite particles , 2002 .

[141]  W. Heer,et al.  Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5 nm interstellar absorption feature , 1993 .

[142]  Hongwei Zhu,et al.  Carbon Nanotube Sponges , 2010, Advanced materials.

[143]  Xavier Gonze,et al.  Energetics of negatively curved graphitic carbon , 1992, Nature.

[144]  V. Varadan,et al.  Catalytic chemical vapor deposition synthesis and electron microscopy observation of coiled carbon nanotubes , 2003 .

[145]  T. Ichihashi,et al.  Controlling the incorporation and release of C60 in nanometer-scale hollow spaces inside single-wall carbon nanohorns. , 2005, The journal of physical chemistry. B.

[146]  Dieter Suter,et al.  Scalable architecture for spin-based quantum computers with a single type of gate , 2002 .

[147]  D. Tománek,et al.  Energetics and packing of fullerenes in nanotube peapods , 2005 .

[148]  H. Terrones Curved graphite and its mathematical transformations , 1994 .

[149]  Marc Monthioux,et al.  Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials , 1999 .

[150]  G. Amaratunga,et al.  Large-scale synthesis of single-walled carbon nanohorns by submerged arc , 2004 .

[151]  Fred Wudl,et al.  Carbon allotropes: beyond graphite and diamond , 2007 .

[152]  J. Huang,et al.  Highly curved carbon nanostructures produced by ball-milling , 1999 .

[153]  E. Taguchi,et al.  Transformation of diamond nanoparticles into onion-like carbon by electron irradiation studied directly inside an ultrahigh-vacuum transmission electron microscope , 2005 .

[154]  M. Dresselhaus,et al.  Selective and Efficient Impregnation of Metal Nanoparticles on Cup-Stacked-Type Carbon Nanofibers , 2003 .

[155]  A. N. Ivlev,et al.  Ultrahard and superhard carbon phases produced from C60 by heating at high pressure: structural and Raman studies , 1995 .

[156]  D. Lednicer,et al.  The Synthesis and Resolution of Hexahelicene1 , 1956 .

[157]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[158]  N. Grobert,et al.  Processing and properties of aligned multi-walled carbon nanotube/aluminoborosilicate glass composites made by sol–gel processing , 2010 .

[159]  C. Bertozzi,et al.  Synthesis, Characterization, and Theory of [9]-, [12]-, and [18]Cycloparaphenylene: Carbon Nanohoop Structures , 2008, Journal of the American Chemical Society.

[160]  D. Tománek,et al.  Stability differences and conversion mechanism between nanotubes and scrolls , 2004 .

[161]  I. Alexandrou,et al.  Properties of carbon onions produced by an arc discharge in water , 2002 .

[162]  X. B. Zhang,et al.  Electron microscopy study of coiled carbon tubules , 1995 .

[163]  A. Okotrub,et al.  Fluorination of Arc-Produced Carbon Material Containing Multiwall Nanotubes , 2002 .

[164]  Richard B. Kaner,et al.  A Chemical Route to Carbon Nanoscrolls , 2003, Science.

[165]  M I Katsnelson,et al.  Intrinsic ripples in graphene. , 2007, Nature materials.

[166]  I. László,et al.  Toroidal and spherical fullerene‐like molecules with only pentagonal and heptagonal faces , 2001 .

[167]  A. Oberlin,et al.  Filamentous growth of carbon through benzene decomposition , 1976 .

[168]  K. Jenkins,et al.  Operation of graphene transistors at gigahertz frequencies. , 2008, Nano letters.

[169]  P. Avouris,et al.  Ring Formation in Single-Wall Carbon Nanotubes , 1999 .

[170]  H. W. Kroto,et al.  The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70 , 1987, Nature.

[171]  Masayuki Kawaguchi,et al.  Growth of regularly coiled carbon filaments by Ni catalyzed pyrolysis of acetylene, and their morphology and extension characteristics , 1990 .

[172]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[173]  H. Dai,et al.  Fullerene 'crop circles' , 1997, Nature.

[174]  G. Rigby,et al.  An Unusual Form of Carbon , 1953, Nature.

[175]  S. Kabana,et al.  Antihelium-3 production in lead-lead collisions at 158 A GeV/c , 2003 .

[176]  Ken Umeno Chaotic Monte Carlo Computation: A Dynamical Effect of Random-Number Generations , 1998 .

[177]  Hidehiro Sakurai,et al.  A Synthesis of Sumanene, a Fullerene Fragment , 2003, Science.

[178]  J. Rivière,et al.  A new technique for fullerene onion formation , 1995, Journal of Materials Science.

[179]  James Mack,et al.  A Rational Chemical Synthesis of C60 , 2002, Science.

[180]  D. Zakharov,et al.  The structure of nanotubes fabricated by carbon evaporation at high gas pressure , 2000 .

[181]  C. Ewels Nitrogen violation of the isolated pentagon rule. , 2006, Nano letters.

[182]  A. T. Johnson,et al.  Mapping the One-Dimensional Electronic States of Nanotube Peapod Structures , 2002, Science.

[183]  M. Heggie,et al.  Dislocations in carbon nanotube walls. , 2007, Journal of nanoscience and nanotechnology.

[184]  N. Grobert,et al.  Effect of the experimental parameters on the structure of nitrogen-doped carbon nanotubes produced by aerosol chemical vapour deposition , 2009 .

[185]  A. Mackay,et al.  Shape and complexity at the atomic scale: the case of layered nanomaterials , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[186]  E. Yazgan,et al.  Electronic properties of carbon nanotoroidal structures , 2004 .

[187]  Hernandez,et al.  New metallic allotropes of planar and tubular carbon , 2000, Physical review letters.

[188]  J. Nagy,et al.  Carbon nanoarchitectures containing non-hexagonal rings: ''necklaces of pearls'' , 2004 .

[189]  S. Fukuzumi,et al.  Stacked-cup carbon nanotubes for photoelectrochemical solar cells. , 2006, Angewandte Chemie.