Finite elements, design optimization, and nondestructive evaluation: A review in magnetics, and future directions in GPU-based, element-by-element coupled optimization and NDE

Abstract : Most important journal papers in magnetics are selected from conference records with quick review and subject to stringent page limits. The literature as a result is unsatisfactory, inadequately attributing previous works and without sufficient details to replicate work presented. This paper therefore reviews mathematical optimization in synthesis and nondestructive evaluation (NDE) by the finite element method in magnetics. The review identifies the earliest papers. Thereafter this paper proposes and establishes the feasibility of coupled problem optimization using the genetic algorithm to avoid mesh induced minima which hurt gradient based methods. The genetic algorithm, while avoiding the need for derivatives, results in having to undertake even more numerous finite element solutions. Although the genetic algorithm has been applied in optimization, in coupled systems the number of object function evaluations doubles. We there examine the use of graphics processing units (GPUs) to handle the immense computational load. GPUs have recently been introduced in finite element analysis but their memory limits are often not recognized and are critically limiting when parallelizing the several solutions required in optimization. To overcome this limit, element-by-element finite element matrix processing is employed, making coupled problems practicable on GPUs. We overcome the memory limits faced by others.

[1]  L. Udpa,et al.  Reduced Magnetic Vector Potential Formulation in the Finite Element Analysis of Eddy Current Nondestructive Testing , 2009, IEEE Transactions on Magnetics.

[2]  H. S. Cabayan,et al.  Efficient Techniques for Finite Element Analysis of Electric Machines , 1973 .

[3]  J. Pávó,et al.  Reconstruction of crack shape by optimization using eddy current field measurement , 1994 .

[4]  R. R. Saldanha,et al.  A dual method for constrained optimization design in magnetostatic problems , 1991 .

[5]  Rodney R. Saldanha,et al.  Inverse problem methodology and finite elements in the identification of cracks, sources, materials, and their geometry in inaccessible locations , 1991 .

[6]  S.R.H. Hoole,et al.  Geometric parametrization and constrained optimization techniques in the design of salient pole synchronous machines , 1992 .

[7]  Zhiwei Zeng,et al.  Pulsed Eddy-Current Based Giant Magnetoresistive System for the Inspection of Aircraft Structures , 2010, IEEE Transactions on Magnetics.

[9]  Marius Purcar,et al.  Optimal shape design of electrostatic microactuators: A multiobjective formulation , 2013 .

[10]  S. Gyimothy,et al.  Parallel Realization of the Element-by-Element FEM Technique by CUDA , 2012, IEEE Transactions on Magnetics.

[11]  Mehdi Moallem,et al.  Design Optimization of IPMSM for 42 V Integrated Starter Alternator Using Lumped Parameter Model and Genetic Algorithms , 2014, IEEE Transactions on Magnetics.

[12]  J. Simkin,et al.  Optimization problems in electromagnetics , 1991 .

[13]  Oszkar Biro,et al.  Comparison of different optimization strategies in the design of electromagnetic devices , 1991 .

[14]  Garret N. Vanderplaats,et al.  Numerical optimization techniques for engineering design , 1999 .

[15]  Ji Hoon Kim,et al.  Three-dimensional constrained optimization of modular toroid-type SMES using co-evolutionary algorithm , 2004 .

[16]  S. Ratnajeevan,et al.  Optimization algorithms for magnetics and their parallelizability , 1997 .

[17]  J. Coulomb,et al.  An original stationary method using local jacobian derivative for direct finite element computation of electromagnetic force, torque and stiffness , 1982 .

[18]  L. Udpa,et al.  Adaptive Wavelets for Characterizing Magnetic Flux Leakage Signals from Pipeline inspection , 2006, INTERMAG 2006 - IEEE International Magnetics Conference.

[19]  Eric Darve,et al.  Assembly of finite element methods on graphics processors , 2011 .

[20]  J. L. Coulomb,et al.  A methodology for the determination of global electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torques and stiffness , 1983 .

[21]  S. Hoole Computer-aided analysis and design of electromagnetic devices , 1989 .

[22]  M. Repetto,et al.  Design of superconducting MHD saddle magnets , 1992 .

[23]  Maria Evelina Mognaschi,et al.  Non-Linear Multi-Physics Analysis and Multi-Objective Optimization in Electroheating Applications , 2014, IEEE Transactions on Magnetics.

[24]  Randy L. Haupt,et al.  Comparison between genetic and gradient-based optimization algorithms for solving electromagnetics problems , 1995 .

[25]  S. Gitosusastro,et al.  Performance derivative calculations and optimization process , 1989 .

[26]  E.I. Amoiralis,et al.  Artificial Intelligence Combined with Hybrid FEM-BE Techniques for Global Transformer Optimization , 2006, IEEE Transactions on Magnetics.

[27]  Graham R. Wood,et al.  Matching Stochastic Algorithms to Objective Function Landscapes , 2005, J. Glob. Optim..

[28]  Pheng-Ann Heng,et al.  A hybrid condensed finite element model with GPU acceleration for interactive 3D soft tissue cutting , 2004, Comput. Animat. Virtual Worlds.

[29]  Fumio Kojima,et al.  Identification of crack profiles using genetic programming and fuzzy inference , 2001 .

[30]  S. Ratnajeevan,et al.  Fictitious minima of object functions, finite element meshes, and edge elements in electromagnetic device synthesis , 1991 .

[31]  Jean-Louis Coulomb Analyse tridimensionnelle des champs électriques et magnétiques par la méthode des éléments finis‎ , 1981 .

[32]  S.S. Udpa,et al.  Three-dimensional defect reconstruction from eddy-current NDE signals using a genetic local search algorithm , 2004, IEEE Transactions on Magnetics.

[33]  S.R.H. Hoole,et al.  REVIEW ARTICLE Numerical Modeling of Macro and Micro Behaviors of Materials in Processing" A Review , 1992 .

[34]  T. Hughes,et al.  An element-by-element solution algorithm for problems of structural and solid mechanics , 1983 .

[35]  Computation of hyperthermia‐SAR distributions in three dimensions (abstract) , 1988 .

[36]  Graham F. Carey,et al.  Element‐by‐element vector and parallel computations , 1988 .

[37]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[38]  S.R.H. Hoole,et al.  The subregion method in magnetic field analysis and design optimization , 1992 .

[39]  A Candeo,et al.  Multiphysics Modeling of Induction Hardening of Ring Gears for the Aerospace Industry , 2011, IEEE Transactions on Magnetics.

[40]  O. Pironneau Optimal Shape Design for Elliptic Systems , 1983 .

[41]  S. Ratnajeevan H. Hoole,et al.  Development of a benchmark problem and a general optimisation package with Powell's method to develop the benchmark , 2007 .

[42]  J. Lavers,et al.  A boundary element method to predict the shape of a molten metal free surface in EM confinement field , 1988 .

[43]  M. Repetto,et al.  Multiobjective optimization in magnetostatics: a proposal for benchmark problems , 1996 .

[44]  Wolfgang Müller,et al.  Optimization of electrotechnical devices using a numerical laboratory , 1990 .

[45]  S. Hoole,et al.  Two requisite tools in the optimal design of electromagnetic devices , 1991 .

[46]  K. Yamazaki,et al.  An Adaptive Finite Element Method for Minor Shape Modification in Optimization Algorithms , 2008, IEEE Transactions on Magnetics.

[47]  C. Magele,et al.  FEM and evolution strategies in the optimal design of electromagnetic devices , 1990, International Conference on Magnetics.

[48]  Naiguang Lei,et al.  Nondestructive Inspection Using Rotating Magnetic Field Eddy-Current Probe , 2011, IEEE Transactions on Magnetics.

[49]  A Taflove,et al.  Recent advances in external electromagnetic hyperthermia. , 1998, Cancer treatment and research.

[50]  Jean-Louis Coulomb,et al.  A Surrogate Genetic Programming Based Model to Facilitate Robust Multi-Objective Optimization: A Case Study in Magnetostatics , 2013, IEEE Transactions on Magnetics.

[51]  S.R.H. Hoole,et al.  Unconstrained optimization of coupled magneto-thermal problems , 1995 .

[52]  S.R.H. Hoole,et al.  Surface impedance models for corners and slots , 1985 .

[53]  S. Hoole,et al.  On finite element force computation from two- and three-dimensional magnetostatic fields , 1985 .

[54]  K. Weeber,et al.  A structural mapping technique for geometric parametrization in the optimization of magnetic devices , 1992 .

[55]  R. Weeks,et al.  Application of structural optimization using finite elements , 1987 .

[56]  Satish S. Udpa,et al.  Solution of inverse problems in electromagnetic NDE using finite element methods , 1998 .

[57]  S.R.H. Hoole,et al.  Structural design optimization as a technology source for developments in the electromagnetics domain , 1993 .

[58]  M. Turner Stiffness and Deflection Analysis of Complex Structures , 1956 .

[59]  Song-Yop Hahn,et al.  An inverse analysis for crack identification in eddy current NDT of tubes , 1994 .

[60]  Dipti Srinivasan,et al.  Fuzzy multiobject optimization for the starting design of a magnetic circuit , 1996 .

[61]  S. Russenschuck,et al.  Mathematical optimization techniques for the design of permanent magnet synchronous machines based on numerical field calculation , 1990 .

[62]  S. Krishnakumar,et al.  A common algorithm for various parametric geometric changes in finite element design sensitivity computation , 2005 .

[63]  A. A. Arkadan,et al.  Optimization of a magnetic pole face using linear constraints to avoid jagged contours , 1994 .

[64]  O. Pironneau,et al.  Optimum design with lagrangian finite elements: Design of an electromagnet , 1978 .

[65]  Michal Mrozowski,et al.  Generation of large finite-element matrices on multiple graphics processors , 2013 .

[66]  D. Lesselier,et al.  Adaptive Metamodels for Crack Characterization in Eddy-Current Testing , 2011, IEEE Transactions on Magnetics.

[67]  V. Komkov Optimal shape design for elliptic systems , 1986 .

[68]  Song-Yop Hahn,et al.  An optimal design of capacitor-driven coilgun , 1994 .

[69]  Garret N. Vanderplaats,et al.  Numerical Optimization Techniques for Engineering Design: With Applications , 1984 .

[70]  S. Ratnajeevan H. Hoole,et al.  FINITE ELEMENTS, ELECTROMAGNETICS AND DESIGN , 1995 .

[71]  Ravi Thyagarajan,et al.  Finite Element Optimization for Nondestructive Evaluation on a Graphics Processing Unit for Ground Vehicle Hull Inspection , 2013 .

[72]  J. Arora,et al.  Efficient optimal design of structures by generalized steepest descent programming , 1976 .

[73]  W. Lord,et al.  Impedance and mesh structure considerations in the finite element analysis of Eddy current NDT probe phenomena , 1985 .

[74]  N. Takahashi,et al.  Parallelization of Finite Element Analysis of Nonlinear Magnetic Fields Using GPU , 2013, IEEE Transactions on Magnetics.

[75]  Fabrizio Dughiero,et al.  Parametric vs non-parametric optimal design of induction heating devices , 2014 .

[76]  S. Ratnajeevan,et al.  Optimal design, inverse problems and parallel computers , 1990, International Conference on Magnetics.

[77]  Song-Yop Hahn,et al.  Design sensitivity analysis for nonlinear magnetostatic problems using finite element method , 1992 .

[78]  J. R. Suriano,et al.  Optimized design and three-dimensional (3-D) finite element analysis of a rotary actuator , 1996 .