Computation of the L∞-Norm Using Rational Interpolation

Abstract We propose a greedy interpolation approach to compute the L∞-norm of a possibly irrational L∞-function. We approximate this function by a sequence of rational L∞-functions. For this we use interpolation employing the Loewner matrix framework. In each iteration, the L∞-norm of the rational approximation is computed using established methods. Then a new interpolation point is added where the L∞-norm of the function approximation is attained. This way, the L∞-norm of the approximation converges superlinearly to the L∞-norm of the original function. We illustrate the efficiency of the resulting algorithm for various numerical examples and compare it to state-of-the-art methods.

[1]  M. Steinbuch,et al.  A fast algorithm to computer the H ∞ -norm of a transfer function matrix , 1990 .

[2]  M. Overton,et al.  FAST APPROXIMATION OF THE H∞ NORM VIA OPTIMIZATION OVER SPECTRAL VALUE SETS∗ , 2012 .

[3]  Michael L. Overton,et al.  Hybrid expansion–contraction: a robust scaleable method for approximating the H∞ norm , 2016 .

[4]  Sanda Lefteriu,et al.  Chapter 8: A Tutorial Introduction to the Loewner Framework for Model Reduction , 2017 .

[5]  A. Antoulas,et al.  A framework for the solution of the generalized realization problem , 2007 .

[6]  S. Gugercin,et al.  Realization-independent H 2-approximation , 2012 .

[7]  S. Boyd,et al.  A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L ∞ -norm , 1990 .

[8]  M. Voigt,et al.  A Structured Pseudospectral Method for H-infinity-Norm Computation of Large-Scale Descriptor Systems , 2012 .

[9]  Paul Van Dooren,et al.  Calculating the HINFINITY-norm Using the Implicit Determinant Method , 2014, SIAM J. Matrix Anal. Appl..

[10]  H. M. P. Couchman Large-Scale Computation at SHARC-Net , 2003 .

[11]  Faisal Alamgir Characterization and Computation , 2013 .

[12]  Emre Mengi,et al.  Numerical Optimization of Eigenvalues of Hermitian Matrix Functions , 2011, SIAM J. Matrix Anal. Appl..

[13]  Wim Michiels,et al.  Characterization and Computation of HINFINITY Norms for Time-Delay Systems , 2010, SIAM J. Matrix Anal. Appl..

[14]  Wim Michiels,et al.  CHARACTERIZATION AND COMPUTATION OF H∞ NORMS FOR TIME-DELAY SYSTEMS ∗ , 2010 .

[15]  Serkan Gugercin,et al.  Interpolatory projection methods for structure-preserving model reduction , 2009, Syst. Control. Lett..

[16]  Peter Benner,et al.  A structured pseudospectral method for $$\mathcal {H}_\infty $$H∞-norm computation of large-scale descriptor systems , 2013, Math. Control. Signals Syst..

[17]  Wim Michiels,et al.  Computation of extremum singular values and the strong H-infinity norm of SISO time-delay systems , 2015, Autom..

[18]  P. Benner,et al.  LARGE-SCALE COMPUTATION OF L∞-NORMS BY A GREEDY , 2017 .

[19]  Vasile Sima,et al.  ${\cal L}_{\infty}$-Norm Computation for Continuous-Time Descriptor Systems Using Structured Matrix Pencils , 2012, IEEE Transactions on Automatic Control.

[20]  Nicholas J. Higham,et al.  NLEVP: A Collection of Nonlinear Eigenvalue Problems , 2013, TOMS.

[21]  Michael L. Overton,et al.  Fast Approximation of the HINFINITY Norm via Optimization over Spectral Value Sets , 2013, SIAM J. Matrix Anal. Appl..

[22]  Wim Michiels,et al.  Computing ℋ∞ norms of time-delay systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.