Extending the Reach of First-Order Algorithms for Nonconvex Min-Max Problems with Cohypomonotonicity

We focus on constrained, $L$-smooth, nonconvex-nonconcave min-max problems either satisfying $\rho$-cohypomonotonicity or admitting a solution to the $\rho$-weakly Minty Variational Inequality (MVI), where larger values of the parameter $\rho>0$ correspond to a greater degree of nonconvexity. These problem classes include examples in two player reinforcement learning, interaction dominant min-max problems, and certain synthetic test problems on which classical min-max algorithms fail. It has been conjectured that first-order methods can tolerate value of $\rho$ no larger than $\frac{1}{L}$, but existing results in the literature have stagnated at the tighter requirement $\rho<\frac{1}{2L}$. With a simple argument, we obtain optimal or best-known complexity guarantees with cohypomonotonicity or weak MVI conditions for $\rho<\frac{1}{L}$. The algorithms we analyze are inexact variants of Halpern and Krasnosel'ski\u{\i}-Mann (KM) iterations. We also provide algorithms and complexity guarantees in the stochastic case with the same range on $\rho$. Our main insight for the improvements in the convergence analyses is to harness the recently proposed"conic nonexpansiveness"property of operators. As byproducts, we provide a refined analysis for inexact Halpern iteration and propose a stochastic KM iteration with a multilevel Monte Carlo estimator.

[1]  V. Cevher,et al.  Stable Nonconvex-Nonconcave Training via Linear Interpolation , 2023, NeurIPS.

[2]  Jelena Diakonikolas,et al.  Variance Reduced Halpern Iteration for Finite-Sum Monotone Inclusions , 2023, ArXiv.

[3]  Q. Tran-Dinh,et al.  Sublinear Convergence Rates of Extragradient-Type Methods: A Survey on Classical and Recent Developments , 2023, 2303.17192.

[4]  Eduard A. Gorbunov,et al.  Single-Call Stochastic Extragradient Methods for Structured Non-monotone Variational Inequalities: Improved Analysis under Weaker Conditions , 2023, NeurIPS.

[5]  V. Cevher,et al.  Escaping limit cycles: Global convergence for constrained nonconvex-nonconcave minimax problems , 2023, ICLR.

[6]  V. Cevher,et al.  Solving stochastic weak Minty variational inequalities without increasing batch size , 2023, ICLR.

[7]  Quoc Tran-Dinh Randomized Block-Coordinate Optimistic Gradient Algorithms for Root-Finding Problems , 2023, 2301.03113.

[8]  Yura Malitsky,et al.  Beyond the Golden Ratio for Variational Inequality Algorithms , 2022, J. Mach. Learn. Res..

[9]  Pratik Worah,et al.  The landscape of the proximal point method for nonconvex–nonconcave minimax optimization , 2022, Mathematical Programming.

[10]  Eduard A. Gorbunov,et al.  Convergence of Proximal Point and Extragradient-Based Methods Beyond Monotonicity: the Case of Negative Comonotonicity , 2022, ICML.

[11]  Yang Cai,et al.  Accelerated Single-Call Methods for Constrained Min-Max Optimization , 2022, ICLR.

[12]  Luo Luo,et al.  Near-Optimal Algorithms for Making the Gradient Small in Stochastic Minimax Optimization , 2022, ArXiv.

[13]  R. Cominetti,et al.  Stochastic Fixed-Point Iterations for Nonexpansive Maps: Convergence and Error Bounds , 2022, SIAM J. Control. Optim..

[14]  Ernest K. Ryu,et al.  Accelerated Minimax Algorithms Flock Together , 2022, 2205.11093.

[15]  K. Levy,et al.  Adapting to Mixing Time in Stochastic Optimization with Markovian Data , 2022, International Conference on Machine Learning.

[16]  A. Bohm,et al.  Solving Nonconvex-Nonconcave Min-Max Problems exhibiting Weak Minty Solutions , 2022, Trans. Mach. Learn. Res..

[17]  Haihao Lu,et al.  On the Linear Convergence of Extragradient Methods for Nonconvex-Nonconcave Minimax Problems , 2022, INFORMS J. Optim..

[18]  Ioannis Mitliagkas,et al.  Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity , 2021, NeurIPS.

[19]  Yair Carmon,et al.  Stochastic Bias-Reduced Gradient Methods , 2021, NeurIPS.

[20]  Sucheol Lee,et al.  Fast Extra Gradient Methods for Smooth Structured Nonconvex-Nonconcave Minimax Problems , 2021, NeurIPS.

[21]  Ulrich Kohlenbach,et al.  On the proximal point algorithm and its Halpern-type variant for generalized monotone operators in Hilbert space , 2021, Optimization Letters.

[22]  TaeHo Yoon,et al.  Accelerated Algorithms for Smooth Convex-Concave Minimax Problems with O(1/k^2) Rate on Squared Gradient Norm , 2021, ICML.

[23]  Guanghui Lan Policy mirror descent for reinforcement learning: linear convergence, new sampling complexity, and generalized problem classes , 2021, Mathematical Programming.

[24]  Noah Golowich,et al.  Independent Policy Gradient Methods for Competitive Reinforcement Learning , 2021, NeurIPS.

[25]  Guanghui Lan,et al.  Simple and optimal methods for stochastic variational inequalities, I: operator extrapolation , 2020, SIAM J. Optim..

[26]  Michael I. Jordan,et al.  Efficient Methods for Structured Nonconvex-Nonconcave Min-Max Optimization , 2020, AISTATS.

[27]  John C. Duchi,et al.  Large-Scale Methods for Distributionally Robust Optimization , 2020, NeurIPS.

[28]  Constantinos Daskalakis,et al.  The complexity of constrained min-max optimization , 2020, STOC.

[29]  Felix Lieder,et al.  On the convergence rate of the Halpern-iteration , 2020, Optim. Lett..

[30]  E. R. Csetnek,et al.  Two Steps at a Time - Taking GAN Training in Stride with Tseng's Method , 2020, SIAM J. Math. Data Sci..

[31]  Ya-Ping Hsieh,et al.  The limits of min-max optimization algorithms: convergence to spurious non-critical sets , 2020, ICML.

[32]  Jelena Diakonikolas Halpern Iteration for Near-Optimal and Parameter-Free Monotone Inclusion and Strong Solutions to Variational Inequalities , 2020, COLT.

[33]  Laurentiu Leustean,et al.  Quantitative results on a Halpern-type proximal point algorithm , 2020, Computational Optimization and Applications.

[34]  Pontus Giselsson,et al.  On compositions of special cases of Lipschitz continuous operators , 2019, Fixed Point Theory and Algorithms for Sciences and Engineering.

[35]  John C. Duchi,et al.  Lower bounds for non-convex stochastic optimization , 2019, Mathematical Programming.

[36]  Hung M. Phan,et al.  Conical averagedness and convergence analysis of fixed point algorithms , 2019, J. Glob. Optim..

[37]  J. Malick,et al.  On the convergence of single-call stochastic extra-gradient methods , 2019, NeurIPS.

[38]  Donghwan Kim,et al.  Accelerated proximal point method for maximally monotone operators , 2019, Mathematical Programming.

[39]  Heinz H. Bauschke,et al.  Generalized monotone operators and their averaged resolvents , 2019, Mathematical Programming.

[40]  Minh N. Dao,et al.  Adaptive Douglas-Rachford Splitting Algorithm for the Sum of Two Operators , 2018, SIAM J. Optim..

[41]  Matthew K. Tam,et al.  A Forward-Backward Splitting Method for Monotone Inclusions Without Cocoercivity , 2018, SIAM J. Optim..

[42]  Zeyuan Allen-Zhu,et al.  How To Make the Gradients Small Stochastically: Even Faster Convex and Nonconvex SGD , 2018, NeurIPS.

[43]  Aleksander Madry,et al.  Towards Deep Learning Models Resistant to Adversarial Attacks , 2017, ICLR.

[44]  Shimrit Shtern,et al.  A First Order Method for Solving Convex Bilevel Optimization Problems , 2017, SIAM J. Optim..

[45]  Peter W. Glynn,et al.  Unbiased Monte Carlo for optimization and functions of expectations via multi-level randomization , 2015, 2015 Winter Simulation Conference (WSC).

[46]  Guanghui Lan,et al.  On the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operators , 2013, Comput. Optim. Appl..

[47]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[48]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[49]  P. L. Combettes,et al.  Generalized Mann iterates for constructing fixed points in Hilbert spaces , 2002 .

[50]  C. W. Groetsch,et al.  A Note on Segmenting Mann Iterates , 1972 .

[51]  B. Halpern Fixed points of nonexpanding maps , 1967 .

[52]  W. R. Mann,et al.  Mean value methods in iteration , 1953 .

[53]  Niao He,et al.  On the Bias-Variance-Cost Tradeoff of Stochastic Optimization , 2021, NeurIPS.

[54]  Jinsung Yoon,et al.  GENERATIVE ADVERSARIAL NETS , 2018 .

[55]  Patrick L. Combettes,et al.  Proximal Methods for Cohypomonotone Operators , 2004, SIAM J. Control. Optim..

[56]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[57]  P. L. Combettes,et al.  Quasi-Fejérian Analysis of Some Optimization Algorithms , 2001 .

[58]  Paul Tseng,et al.  A Modified Forward-backward Splitting Method for Maximal Monotone Mappings 1 , 1998 .

[59]  J. Neumann A Model of General Economic Equilibrium , 1945 .